1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/* Return arc hyperbole sine for double value, with the imaginary part
of the result possibly adjusted for use in computing other
functions.
Copyright (C) 1997-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Return the complex inverse hyperbolic sine of finite nonzero Z,
with the imaginary part of the result subtracted from pi/2 if ADJ
is nonzero. */
__complex__ double
__kernel_casinh (__complex__ double x, int adj)
{
__complex__ double res;
double rx, ix;
__complex__ double y;
/* Avoid cancellation by reducing to the first quadrant. */
rx = fabs (__real__ x);
ix = fabs (__imag__ x);
if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
{
/* For large x in the first quadrant, x + csqrt (1 + x * x)
is sufficiently close to 2 * x to make no significant
difference to the result; avoid possible overflow from
the squaring and addition. */
__real__ y = rx;
__imag__ y = ix;
if (adj)
{
double t = __real__ y;
__real__ y = __copysign (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
__real__ res += M_LN2;
}
else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
{
double s = __ieee754_hypot (1.0, rx);
__real__ res = __ieee754_log (rx + s);
if (adj)
__imag__ res = __ieee754_atan2 (s, __imag__ x);
else
__imag__ res = __ieee754_atan2 (ix, s);
}
else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
{
double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0));
__real__ res = __ieee754_log (ix + s);
if (adj)
__imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x));
else
__imag__ res = __ieee754_atan2 (s, rx);
}
else if (ix == 1.0 && rx < 0.5)
{
if (rx < DBL_EPSILON / 8.0)
{
__real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx),
__copysign (1.0, __imag__ x));
else
__imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx));
}
else
{
double d = rx * __ieee754_sqrt (4.0 + rx * rx);
double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0);
double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0);
__real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
if (adj)
__imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2,
__imag__ x));
else
__imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1);
}
}
else
{
__real__ y = (rx - ix) * (rx + ix) + 1.0;
__imag__ y = 2.0 * rx * ix;
y = __csqrt (y);
__real__ y += rx;
__imag__ y += ix;
if (adj)
{
double t = __real__ y;
__real__ y = copysign (__imag__ y, __imag__ x);
__imag__ y = t;
}
res = __clog (y);
}
/* Give results the correct sign for the original argument. */
__real__ res = __copysign (__real__ res, __real__ x);
__imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
return res;
}
|