summary refs log tree commit diff
path: root/math/auto-libm-test-in
blob: 17158ea685b172a050131db1a594dbf7465450d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
# libm test inputs for gen-auto-libm-tests.c.
# Copyright (C) 1997-2014 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <http://www.gnu.org/licenses/>.  */

acos 0
acos -0
acos 1
acos -1
acos 0.5
acos -0.5
acos 0.75
acos 2e-17
acos 0.0625
acos 0x0.ffffffp0
acos -0x0.ffffffp0
acos 0x0.ffffffff8p0
acos -0x0.ffffffff8p0
acos 0x0.ffffffffffffp0
acos -0x0.ffffffffffffp0
acos 0x0.ffffffffffffffffp0
acos -0x0.ffffffffffffffffp0
acos min
acos -min
acos min_subnorm
acos -min_subnorm

acosh 1
acosh 1.625
acosh 7
acosh 100
acosh 1e5
acosh max no-test-inline

asin 0
asin -0
asin 0.5
asin -0.5
asin 1.0
asin -1.0
asin 0.75
asin 0x0.ffffffp0
asin -0x0.ffffffp0
asin 0x0.ffffffff8p0
asin -0x0.ffffffff8p0
asin 0x0.ffffffffffffp0
asin -0x0.ffffffffffffp0
asin 0x0.ffffffffffffffffp0
asin -0x0.ffffffffffffffffp0
# Bug 16351: underflow exception may be missing.
# Bug 16599: spurious underflow may occur.
asin min missing-underflow
asin -min missing-underflow spurious-underflow:dbl-64:x86
asin min_subnorm missing-underflow
asin -min_subnorm missing-underflow

asinh 0
asinh -0
asinh 0.75
asinh 1
asinh 10
asinh 100
asinh 1e6
asinh 0x1p100
# Bug 16350: underflow exception may be missing.
asinh min missing-underflow
asinh -min missing-underflow
asinh min_subnorm missing-underflow
asinh -min_subnorm missing-underflow
asinh max no-test-inline
asinh -max no-test-inline

atan 0
atan -0
atan max
atan -max
atan 1
atan -1
atan 0.75
atan 0x1p-5
atan 2.5
atan 10
atan 1e6
# Bug 15319: underflow exception may be missing.
atan 0x1p-100 missing-underflow
atan 0x1p-600 missing-underflow
atan 0x1p-10000 missing-underflow
atan min missing-underflow
atan -min missing-underflow
atan min_subnorm missing-underflow
atan -min_subnorm missing-underflow

# atan2 (0,x) == 0 for x > 0.
atan2 0 1
# atan2 (-0,x) == -0 for x > 0.
atan2 -0 1
atan2 0 0
atan2 -0 0
# atan2 (+0,x) == +pi for x < 0.
atan2 0 -1
# atan2 (-0,x) == -pi for x < 0.
atan2 -0 -1
atan2 0 -0
atan2 -0 -0
# atan2 (y,+0) == pi/2 for y > 0.
atan2 1 0
# atan2 (y,-0) == pi/2 for y > 0.
atan2 1 -0
# atan2 (y,+0) == -pi/2 for y < 0.
atan2 -1 0
# atan2 (y,-0) == -pi/2 for y < 0.
atan2 -1 -0
atan2 max max
atan2 max -max
atan2 -max max
atan2 -max -max
atan2 max min
atan2 -max -min
atan2 -max min
atan2 max -min
atan2 max min_subnorm
atan2 -max -min_subnorm
atan2 -max min_subnorm
atan2 max -min_subnorm
atan2 0.75 1
atan2 -0.75 1.0
atan2 0.75 -1.0
atan2 -0.75 -1.0
atan2 0.390625 .00029
atan2 1.390625 0.9296875
atan2 -0.00756827042671106339 -.001792735857538728036
atan2 0x1.00000000000001p0 0x1.00000000000001p0
atan2 min min
atan2 min -min
atan2 -min min
atan2 -min -min
atan2 min_subnorm min_subnorm
atan2 min_subnorm -min_subnorm
atan2 -min_subnorm min_subnorm
atan2 -min_subnorm -min_subnorm
atan2 1 -max
atan2 -1 -max
atan2 min -max
atan2 -min -max
atan2 min_subnorm -max
atan2 -min_subnorm -max
# Bug 15319: underflow exception may be missing.
# Bug 16349: errno setting may be missing.
atan2 1 max missing-underflow
atan2 -1 max missing-underflow
atan2 min max missing-underflow missing-errno
atan2 -min max missing-underflow missing-errno
atan2 min_subnorm max missing-underflow missing-errno
atan2 -min_subnorm max missing-underflow missing-errno

atanh 0
atanh -0
atanh 0.75
atanh -0.75
atanh 0.25
atanh 0x1p-5
atanh 0x1p-10
atanh 0x1.2345p-20
# Bug 16352: underflow exception may be missing.
# Bug 16357: spurious underflow may occur.
atanh min missing-underflow spurious-underflow:ldbl-96-intel:x86
atanh -min missing-underflow spurious-underflow:ldbl-96-intel:x86
atanh min_subnorm missing-underflow
atanh -min_subnorm missing-underflow

# cabs (x,y) == cabs (y,x).
cabs 0.75 12.390625
# cabs (x,y) == cabs (-x,y).
cabs -12.390625 0.75
# cabs (x,y) == cabs (-y,x).
cabs -0.75 12.390625
# cabs (x,y) == cabs (-x,-y).
cabs -12.390625 -0.75
# cabs (x,y) == cabs (-y,-x).
cabs -0.75 -12.390625
# cabs (x,0) == fabs (x).
cabs -0.75 0
cabs 0.75 0
cabs -1.0 0
cabs 1.0 0
cabs -5.7e7 0
cabs 5.7e7 0
cabs 0.75 1.25

# carg (x + i 0) == 0 for x > 0.
carg 2.0 0
# carg (x - i 0) == -0 for x > 0.
carg 2.0 -0
carg 0 0
carg 0 -0
# carg (x + i 0) == +pi for x < 0.
carg -2.0 0
# carg (x - i 0) == -pi for x < 0.
carg -2.0 -0
carg -0 0
carg -0 -0
# carg (+0 + i y) == pi/2 for y > 0.
carg 0 2.0
# carg (-0 + i y) == pi/2 for y > 0.
carg -0 2.0
# carg (+0 + i y) == -pi/2 for y < 0.
carg 0 -2.0
# carg (-0 + i y) == -pi/2 for y < 0.
carg -0 -2.0

cbrt 0.0
cbrt -0
cbrt -0.001
cbrt 8
cbrt -27.0
cbrt 0.9921875
cbrt 0.75
cbrt 0x1p16383
cbrt 0x1p-16383
cbrt 1e5
cbrt max
cbrt -max
cbrt min
cbrt -min
cbrt min_subnorm
cbrt -min_subnorm

ccos 0.0 0.0
ccos -0 0.0
ccos 0.0 -0
ccos -0 -0

ccos 0.75 1.25
ccos -2 -3

ccos 0.75 89.5
ccos 0.75 -89.5
ccos -0.75 89.5
ccos -0.75 -89.5
ccos 0.75 710.5
ccos 0.75 -710.5
ccos -0.75 710.5
ccos -0.75 -710.5
ccos 0.75 11357.25
ccos 0.75 -11357.25
ccos -0.75 11357.25
ccos -0.75 -11357.25

ccos 0x1p-149 180
ccos 0x1p-1074 1440
ccos 0x1p-16434 22730

ccos min_subnorm_p120 0x1p-120
ccos 0x1p-120 min_subnorm_p120

ccosh 0.0 0.0
ccosh -0 0.0
ccosh 0.0 -0
ccosh -0 -0

ccosh 0.75 1.25
ccosh -2 -3

ccosh 89.5 0.75
ccosh -89.5 0.75
ccosh 89.5 -0.75
ccosh -89.5 -0.75
ccosh 710.5 0.75
ccosh -710.5 0.75
ccosh 710.5 -0.75
ccosh -710.5 -0.75
ccosh 11357.25 0.75
ccosh -11357.25 0.75
ccosh 11357.25 -0.75
ccosh -11357.25 -0.75

ccosh 180 0x1p-149
ccosh 1440 0x1p-1074
ccosh 22730 0x1p-16434

ccosh min_subnorm_p120 0x1p-120
ccosh 0x1p-120 min_subnorm_p120

cexp 0 0
cexp -0 0
cexp 0 -0
cexp -0 -0

cexp 0.75 1.25
cexp -2.0 -3.0

cexp 0 0x1p65
cexp 0 -0x1p65
cexp 50 0x1p127

cexp 0 1e22
cexp 0 0x1p1023
cexp 500 0x1p1023

cexp 0 0x1p16383
cexp -10000 0x1p16383

cexp 88.75 0.75
cexp -95 0.75
cexp 709.8125 0.75
cexp -720 0.75
cexp 11356.5625 0.75
cexp -11370 0.75

cexp 180 0x1p-149
cexp 1440 0x1p-1074
cexp 22730 0x1p-16434

cexp 1e6 0
cexp 1e6 min
cexp 1e6 -min

# Bug 16348: spurious underflow may occur.
cexp min min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64
cexp min -min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64

clog 0.75 1.25
clog -2 -3

clog 0x1.fffffep+127 0x1.fffffep+127
clog 0x1.fffffep+127 1.0
clog 0x1p-149 0x1p-149
clog 0x1p-147 0x1p-147
clog 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
clog 0x1.fffffffffffffp+1023 0x1p+1023
clog 0x1p-1074 0x1p-1074
clog 0x1p-1073 0x1p-1073
clog 0x1.fp+16383 0x1.fp+16383
clog 0x1.fp+16383 0x1p+16383
clog 0x1p-16440 0x1p-16441

clog 0x1p-149 0x1.fp+127
clog -0x1p-149 0x1.fp+127
clog 0x1p-149 -0x1.fp+127
clog -0x1p-149 -0x1.fp+127
clog -0x1.fp+127 0x1p-149
clog -0x1.fp+127 -0x1p-149
clog 0x1.fp+127 0x1p-149
clog 0x1.fp+127 -0x1p-149
clog 0x1p-1074 0x1.fp+1023
clog -0x1p-1074 0x1.fp+1023
clog 0x1p-1074 -0x1.fp+1023
clog -0x1p-1074 -0x1.fp+1023
clog -0x1.fp+1023 0x1p-1074
clog -0x1.fp+1023 -0x1p-1074
clog 0x1.fp+1023 0x1p-1074
clog 0x1.fp+1023 -0x1p-1074
clog 0x1p-16445 0x1.fp+16383
clog -0x1p-16445 0x1.fp+16383
clog 0x1p-16445 -0x1.fp+16383
clog -0x1p-16445 -0x1.fp+16383
clog -0x1.fp+16383 0x1p-16445
clog -0x1.fp+16383 -0x1p-16445
clog 0x1.fp+16383 0x1p-16445
clog 0x1.fp+16383 -0x1p-16445
clog 0x1p-16494 0x1.fp+16383
clog -0x1p-16494 0x1.fp+16383
clog 0x1p-16494 -0x1.fp+16383
clog -0x1p-16494 -0x1.fp+16383
clog -0x1.fp+16383 0x1p-16494
clog -0x1.fp+16383 -0x1p-16494
clog 0x1.fp+16383 0x1p-16494
clog 0x1.fp+16383 -0x1p-16494

clog 1.0 0x1.234566p-10
clog -1.0 0x1.234566p-20
clog 0x1.234566p-30 1.0
clog -0x1.234566p-40 -1.0
clog 0x1.234566p-50 1.0
clog 0x1.234566p-60 1.0
clog 0x1p-62 1.0
clog 0x1p-63 1.0
clog 0x1p-64 1.0
clog 0x1p-510 1.0
clog 0x1p-511 1.0
clog 0x1p-512 1.0
clog 0x1p-8190 1.0
clog 0x1p-8191 1.0
clog 0x1p-8192 1.0

clog 0x1.000566p0 0x1.234p-10
clog 0x1.000566p0 0x1.234p-100
clog -0x1.0000000123456p0 0x1.2345678p-30
clog -0x1.0000000123456p0 0x1.2345678p-1000
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-60
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-1000

clog 0x0.ffffffp0 0x0.ffffffp-100
clog 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
clog 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000

clog 0x1a6p-10 0x3a5p-10
clog 0xf2p-10 0x3e3p-10
clog 0x4d4ep-15 0x6605p-15
clog 0x2818p-15 0x798fp-15
clog 0x9b57bp-20 0xcb7b4p-20
clog 0x2731p-20 0xfffd0p-20
clog 0x2ede88p-23 0x771c3fp-23
clog 0x11682p-23 0x7ffed1p-23
clog 0xa1f2c1p-24 0xc643aep-24
clog 0x659feap-24 0xeaf6f9p-24
clog 0x4447d7175p-35 0x6c445e00ap-35
clog 0x2dd46725bp-35 0x7783a1284p-35
clog 0x164c74eea876p-45 0x16f393482f77p-45
clog 0xfe961079616p-45 0x1bc37e09e6d1p-45
clog 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
clog 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
clog 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
clog 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
clog 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
clog 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
clog 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
clog 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
clog 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
clog 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
clog 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
clog 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
clog 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
clog 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
clog 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
clog 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
clog 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
clog 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
clog 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
clog 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
clog 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
clog 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
clog 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
clog 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
clog 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
clog 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
clog 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
clog 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
clog 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115

cos 0
cos -0
cos pi/3
cos 2pi/3
cos pi/2
cos 0.75
cos 0x1p65
cos -0x1p65
cos 0.80190127184058835
cos 0x1.442f74p+15
cos 1e22
cos 0x1p1023
cos 0x1p16383
cos 0x1p+120
cos 0x1p+127
cos 0x1.fffff8p+127
cos 0x1.fffffep+127
cos 0x1p+50
cos 0x1p+28
cos 0x1.000000cf4a2a2p0
cos 0x1.0000010b239a9p0
cos 0x1.00000162a932bp0
cos 0x1.000002d452a10p0
cos 0x1.000005bc7d86dp0
cos 1
cos 2
cos 3
cos 4
cos 5
cos 6
cos 7
cos 8
cos 9
cos 10
cos max
cos -max
cos min
cos -min
cos min_subnorm
cos -min_subnorm

cosh 0
cosh -0
cosh 0.75
cosh 709.8893558127259666434838436543941497802734375
cosh -709.8893558127259666434838436543941497802734375
cosh 22
cosh 23
cosh 24
cosh 0x1p-5
cosh 0x1p-20
cosh -1
cosh 50
# GCC bug 59666: results on directed rounding may be incorrect.
cosh max no-test-inline xfail-rounding:ldbl-128ibm
cosh -max no-test-inline xfail-rounding:ldbl-128ibm
# Bug 16354: spurious underflow may occur.
cosh min spurious-underflow
cosh -min spurious-underflow
cosh min_subnorm spurious-underflow
cosh -min_subnorm spurious-underflow
# Test values either side of overflow for each floating-point format.
cosh 0x5.96a7ep+4
cosh 0x5.96a7e8p+4
cosh -0x5.96a7ep+4
cosh -0x5.96a7e8p+4
# GCC bug 59666: results on directed rounding may be incorrect.
cosh 0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
cosh -0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh 0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
cosh -0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm

cpow 1 0 0 0
cpow 2 0 10 0
# Bug 14473: cpow results inaccurate.
cpow e 0 0 2pi xfail
cpow 2 3 4 0

cpow 0.75 1.25 0.75 1.25
cpow 0.75 1.25 1.0 1.0
cpow 0.75 1.25 1.0 0.0
cpow 0.75 1.25 0.0 1.0

csqrt 0 0
csqrt 0 -0
csqrt -0 0
csqrt -0 -0

csqrt 16.0 -30.0
csqrt -1 0
csqrt 0 2
csqrt 119 120
csqrt 0.75 1.25
csqrt -2 -3
csqrt -2 3
# Principal square root should be returned (i.e., non-negative real part).
csqrt 0 -1

csqrt 0x1.fffffep+127 0x1.fffffep+127
csqrt 0x1.fffffep+127 1.0
csqrt 0x1p-149 0x1p-149
csqrt 0x1p-147 0x1p-147

csqrt 0 0x1p-149
csqrt 0x1p-50 0x1p-149
csqrt 0x1p+127 0x1p-149
csqrt 0x1p-149 0x1p+127
csqrt 0x1.000002p-126 0x1.000002p-126
csqrt -0x1.000002p-126 -0x1.000002p-126

csqrt 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
csqrt 0x1.fffffffffffffp+1023 0x1p+1023
csqrt 0x1p-1074 0x1p-1074
csqrt 0x1p-1073 0x1p-1073

csqrt 0 0x1p-1074
csqrt 0x1p-500 0x1p-1074
csqrt 0x1p+1023 0x1p-1074
csqrt 0x1p-1074 0x1p+1023
csqrt 0x1.0000000000001p-1022 0x1.0000000000001p-1022
csqrt -0x1.0000000000001p-1022 -0x1.0000000000001p-1022

csqrt 0x1.fp+16383 0x1.fp+16383
csqrt 0x1.fp+16383 0x1p+16383
csqrt 0x1p-16440 0x1p-16441

csqrt 0 0x1p-16445
csqrt 0x1p-5000 0x1p-16445
csqrt 0x1p+16383 0x1p-16445
csqrt 0x1p-16445 0x1p+16383
csqrt 0x1.0000000000000002p-16382 0x1.0000000000000002p-16382
csqrt -0x1.0000000000000002p-16382 -0x1.0000000000000002p-16382

csqrt 0 0x1p-16494
csqrt 0x1p-5000 0x1p-16494
csqrt 0x1p+16383 0x1p-16494
csqrt 0x1p-16494 0x1p+16383
csqrt 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-16382
csqrt -0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-16382

ctan 0 0
ctan 0 -0
ctan -0 0
ctan -0 -0

ctan 0.75 1.25
ctan -2 -3

ctan 1 45
ctan 1 47
ctan 1 355
ctan 1 365
# GCC bug 59666: results on directed rounding may be incorrect.
ctan 1 5680 xfail-rounding:ldbl-128ibm
ctan 1 5690 xfail-rounding:ldbl-128ibm

ctan 0x3.243f6cp-1 0

ctan 0x1p127 1
ctan 0x1p1023 1
ctan 0x1p16383 1

# GCC bug 59666: results on directed rounding may be incorrect.
ctan 50000 50000 xfail-rounding:ldbl-128ibm
ctan 50000 -50000 xfail-rounding:ldbl-128ibm
ctan -50000 50000 xfail-rounding:ldbl-128ibm
ctan -50000 -50000 xfail-rounding:ldbl-128ibm

ctan 0x1.921fb6p+0 0x1p-149
ctan 0x1.921fb54442d18p+0 0x1p-1074
ctan 0x1.921fb54442d1846ap+0 0x1p-16445

ctanh 0 0
ctanh 0 -0
ctanh -0 0
ctanh -0 -0

ctanh 0 pi/4

ctanh 0.75 1.25
ctanh -2 -3

ctanh 45 1
ctanh 47 1
ctanh 355 1
ctanh 365 1
# GCC bug 59666: results on directed rounding may be incorrect.
ctanh 5680 1 xfail-rounding:ldbl-128ibm
ctanh 5690 1 xfail-rounding:ldbl-128ibm

ctanh 0 0x3.243f6cp-1

ctanh 1 0x1p127
ctanh 1 0x1p1023
ctanh 1 0x1p16383

# GCC bug 59666: results on directed rounding may be incorrect.
ctanh 50000 50000 xfail-rounding:ldbl-128ibm
ctanh 50000 -50000 xfail-rounding:ldbl-128ibm
ctanh -50000 50000 xfail-rounding:ldbl-128ibm
ctanh -50000 -50000 xfail-rounding:ldbl-128ibm

ctanh 0x1p-149 0x1.921fb6p+0
ctanh 0x1p-1074 0x1.921fb54442d18p+0
ctanh 0x1p-16445 0x1.921fb54442d1846ap+0

erf 0
erf -0
erf 0.125
erf 0.75
erf 1.25
erf 2.0
erf 4.125
erf 27.0
erf -27.0
erf -0x1.fffffffffffff8p-2

erfc 0.0
erfc -0
erfc 0.125
erfc 0.75
erfc 1.25
erfc 2.0
erfc 0x1.f7303cp+1
erfc 4.125
erfc 0x1.ffa002p+2
erfc 0x1.ffffc8p+2
erfc -0x1.fffffffffffff8p-2
erfc 26.0
erfc 27.0
erfc 28.0
erfc 0x1.ffff56789abcdef0123456789a8p+2
erfc 100
erfc 106
erfc 106.5
erfc 106.625
erfc 107
erfc 108
erfc 1000
erfc max

exp 0
exp -0
exp 1
exp 2
exp 3
exp 0.75
exp 50.0
exp 88.72269439697265625
exp 709.75
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp 1000.0 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp 710 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp -1234
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp 0x2.c679d1f73f0fb628p+8 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp 1e5 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp max xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm
exp -7.4444006192138124e+02
exp -0x1.75f113c30b1c8p+9
exp -max
exp -11342.8125

exp10 0
exp10 -0
exp10 3
exp10 -1
exp10 36
exp10 -36
exp10 305
exp10 -305
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 4932 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
# Bug 16361: underflow exception may be misssing
exp10 -4932 missing-underflow:ldbl-96-intel:x86 missing-underflow:ldbl-96-intel:x86_64
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 1e5 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -1e5
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 1e6 xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -1e6
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 max xfail-rounding:flt-32 xfail-rounding:ldbl-128ibm
exp10 -max
exp10 0.75
# Bug 16284: results on directed rounding may be incorrect.
# GCC bug 59666: results on directed rounding may be incorrect.
exp10 0x1.348e45573a1dd72cp+8 xfail-rounding:flt-32 xfail-rounding:dbl-64 xfail-rounding:ldbl-128ibm

exp2 0
exp2 -0
exp2 10
exp2 -1
exp2 1e6
exp2 -1e6
exp2 max
exp2 -max
exp2 0.75
exp2 100.5
exp2 127
exp2 -149
exp2 1000.25
exp2 1023
exp2 -1074
exp2 16383
exp2 -16400

expm1 0
expm1 -0
expm1 1
expm1 0.75
expm1 50.0
expm1 127.0
expm1 500.0
# GCC bug 59666: results on directed rounding may be incorrect.
expm1 11356.25 xfail-rounding:ldbl-128ibm
expm1 -10.0
expm1 -16.0
expm1 -17.0
expm1 -18.0
expm1 -36.0
expm1 -37.0
expm1 -38.0
expm1 -44.0
expm1 -45.0
expm1 -46.0
expm1 -73.0
expm1 -74.0
expm1 -75.0
expm1 -78.0
expm1 -79.0
expm1 -80.0
expm1 -100.0
expm1 -1000.0
expm1 -10000.0
expm1 -100000.0
# GCC bug 59666: results on directed rounding may be incorrect.
expm1 100000.0 xfail-rounding:ldbl-128ibm
expm1 max xfail-rounding:ldbl-128ibm
expm1 -max
expm1 0x1p-2
expm1 -0x1p-2
expm1 0x1p-10
expm1 -0x1p-10
expm1 0x1p-20
expm1 -0x1p-20
expm1 0x1p-29
expm1 -0x1p-29
expm1 0x1p-32
expm1 -0x1p-32
expm1 0x1p-50
expm1 -0x1p-50
expm1 0x1p-64
expm1 -0x1p-64
expm1 0x1p-100
expm1 -0x1p-100

hypot 0 0
hypot 0 -0
hypot -0 0
hypot -0 -0
# hypot (x,y) == hypot (+-x, +-y).
hypot 0.7 12.4
hypot -0.7 12.4
hypot 0.7 -12.4
hypot -0.7 -12.4
hypot 12.4 0.7
hypot -12.4 0.7
hypot 12.4 -0.7
hypot -12.4 -0.7
# hypot (x,0) == fabs (x).
hypot 0.75 0
hypot -0.75 0
hypot -5.7e7 0
hypot 0.75 1.25
hypot 1.0 0x1p-61
hypot 0x1p+0 0x1.fp-129
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
hypot 0x3p125 0x4p125 no-test-inline:flt-32
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
hypot 0x3p16381 0x4p16381 no-test-inline
hypot 0x1p-149 0x1p-149
hypot 0x1p-1074 0x1p-1074
hypot 0x1p-16445 0x1p-16445 no-test-inline
hypot 0x1p-16494 0x1p-16494 no-test-inline
hypot 0x0.fffffep-126 0x0.fp-127
hypot 0x0.fffffep-126 0x0.fp-130
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
hypot 0 min_subnorm no-test-inline

j0 -1.0
j0 0.0
j0 0.125
j0 0.75
j0 1.0
j0 1.5
j0 2.0
j0 8.0
j0 10.0
j0 4.0
j0 -4.0
j0 0x1.d7ce3ap+107
j0 -0x1.001000001p+593
j0 0x1p1023
j0 0x1p16382
j0 0x1p16383

j1 -1.0
j1 0.0
j1 0.125
j1 0.75
j1 1.0
j1 1.5
j1 2.0
j1 8.0
j1 10.0
j1 0x1.3ffp+74
j1 0x1.ff00000000002p+840
j1 0x1p1023
j1 0x1p16382
j1 0x1p16383

# jn (0, x) == j0 (x).
jn 0 -1.0
jn 0 0.0
jn 0 0.125
jn 0 0.75
jn 0 1.0
jn 0 1.5
jn 0 2.0
jn 0 8.0
jn 0 10.0
jn 0 4.0
jn 0 -4.0

# jn (1, x) == j1 (x).
jn 1 -1.0
jn 1 0.0
jn 1 0.125
jn 1 0.75
jn 1 1.0
jn 1 1.5
jn 1 2.0
jn 1 8.0
jn 1 10.0

jn 3 -1.0
jn 3 0.0
jn 3 0.125
jn 3 0.75
jn 3 1.0
jn 3 2.0
jn 3 10.0

jn 10 -1.0
jn 10 0.0
jn 10 0.125
jn 10 0.75
jn 10 1.0
jn 10 2.0
jn 10 10.0

jn 2 2.4048255576957729
jn 3 2.4048255576957729
jn 4 2.4048255576957729
jn 5 2.4048255576957729
jn 6 2.4048255576957729
jn 7 2.4048255576957729
jn 8 2.4048255576957729
jn 9 2.4048255576957729

jn 2 0x1.ffff62p+99
jn 2 0x1p127
jn 2 0x1p1023
jn 2 0x1p16383

lgamma max
lgamma 1
lgamma 3
lgamma 0.5
lgamma -0.5
lgamma 0.7
lgamma 1.2
lgamma 0x1p-5
lgamma -0x1p-5
lgamma 0x1p-10
lgamma -0x1p-10
lgamma 0x1p-15
lgamma -0x1p-15
lgamma 0x1p-20
lgamma -0x1p-20
lgamma 0x1p-25
lgamma -0x1p-25
lgamma 0x1p-30
lgamma -0x1p-30
lgamma 0x1p-40
lgamma -0x1p-40
lgamma 0x1p-50
lgamma -0x1p-50
lgamma 0x1p-60
lgamma -0x1p-60
lgamma 0x1p-64
lgamma -0x1p-64
lgamma 0x1p-70
lgamma -0x1p-70
lgamma 0x1p-100
lgamma -0x1p-100
lgamma 0x1p-126
lgamma -0x1p-126
lgamma 0x1p-149
lgamma -0x1p-149
lgamma 0x1p-200
lgamma -0x1p-200
lgamma 0x1p-500
lgamma -0x1p-500
lgamma 0x1p-1000
lgamma -0x1p-1000
lgamma 0x1p-1022
lgamma -0x1p-1022
lgamma 0x1p-1074
lgamma -0x1p-1074
lgamma 0x1p-5000
lgamma -0x1p-5000
lgamma 0x1p-10000
lgamma -0x1p-10000
lgamma 0x1p-16382
lgamma -0x1p-16382
lgamma 0x1p-16445
lgamma -0x1p-16445
lgamma 0x1p-16494
lgamma -0x1p-16494

log 1
log e
log 1/e
log 2
log 10
log 0.75
log min
log min_subnorm

log10 1
log10 0.1
log10 10.0
log10 100.0
log10 10000.0
log10 e
log10 0.75
log10 min
log10 min_subnorm

log1p 0
log1p -0
log1p e-1
log1p -0.25
log1p -0.875
# Bug 16339: underflow exception may be missing.
log1p min missing-underflow
log1p min_subnorm missing-underflow
log1p -min missing-underflow
log1p -min_subnorm missing-underflow

log2 1
log2 e
log2 2.0
log2 16.0
log2 256.0
log2 0.75
log2 min
log2 min_subnorm

pow 0 0
pow 0 -0
pow -0 0
pow -0 -0

pow 10 0
pow 10 -0
pow -10 0
pow -10 -0

pow 1 1
pow 1 -1
pow 1 1.25
pow 1 -1.25
pow 1 0x1p62
pow 1 0x1p63
pow 1 0x1p64
pow 1 0x1p72
pow 1 min_subnorm
pow 1 -min_subnorm

# pow (x, +-0) == 1.
pow 32.75 0
pow 32.75 -0
pow -32.75 0
pow -32.75 -0
pow 0x1p72 0
pow 0x1p72 -0
pow 0x1p-72 0
pow 0x1p-72 -0

pow 0x1p72 0x1p72
pow 10 -0x1p72
pow max max
pow 10 -max

pow 0 1
pow 0 11

pow -0 1
pow -0 11

pow 0 2
pow 0 11.1

pow -0 2
pow -0 11.1

# pow (+0, y) == +0 for y an odd integer > 0.
pow 0.0 27
pow 0.0 0xffffff
pow 0.0 0x1.fffffffffffffp+52
pow 0.0 0x1.fffffffffffffffep+63
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112

# pow (-0, y) == -0 for y an odd integer > 0.
pow -0 27
pow -0 0xffffff
pow -0 0x1fffffe
pow -0 0x1.fffffffffffffp+52
pow -0 0x1.fffffffffffffp+53
pow -0 0x1.fffffffffffffffep+63
pow -0 0x1.fffffffffffffffep+64
pow -0 0x1.ffffffffffffffffffffffffff8p+105
pow -0 0x1.ffffffffffffffffffffffffff8p+106
pow -0 0x1.ffffffffffffffffffffffffffffp+112
pow -0 0x1.ffffffffffffffffffffffffffffp+113

# pow (+0, y) == +0 for y > 0 and not an odd integer.
pow 0.0 4
pow 0.0 0x1p24
pow 0.0 0x1p127
pow 0.0 max
pow 0.0 min_subnorm

# pow (-0, y) == +0 for y > 0 and not an odd integer.
pow -0 4
pow -0 0x1p24
pow -0 0x1p127
pow -0 max
pow -0 min_subnorm

pow 16 0.25
pow 0x1p64 0.125
pow 2 4
pow 256 8

pow 0.75 1.25

pow -7.49321e+133 -9.80818e+16

pow -1.0 -0xffffff
pow -1.0 -0x1fffffe
pow -1.0 -0x1.fffffffffffffp+52
pow -1.0 -0x1.fffffffffffffp+53
pow -1.0 -0x1.fffffffffffffffep+63
pow -1.0 -0x1.fffffffffffffffep+64
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 -max

pow -1.0 0xffffff
pow -1.0 0x1fffffe
pow -1.0 0x1.fffffffffffffp+52
pow -1.0 0x1.fffffffffffffp+53
pow -1.0 0x1.fffffffffffffffep+63
pow -1.0 0x1.fffffffffffffffep+64
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
pow -1.0 max

pow -2.0 126
pow -2.0 127
pow -2.0 -126
pow -2.0 -127

pow -2.0 -0xffffff
pow -2.0 -0x1fffffe
pow -2.0 -0x1.fffffffffffffp+52
pow -2.0 -0x1.fffffffffffffp+53
pow -2.0 -0x1.fffffffffffffffep+63
pow -2.0 -0x1.fffffffffffffffep+64
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 -max

pow -2.0 0xffffff
pow -2.0 0x1fffffe
pow -2.0 0x1.fffffffffffffp+52
pow -2.0 0x1.fffffffffffffp+53
pow -2.0 0x1.fffffffffffffffep+63
pow -2.0 0x1.fffffffffffffffep+64
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
pow -2.0 max

pow -max -2
pow -max -3
pow -max 2
pow -max 3

pow -max -0xffffff
pow -max -0x1fffffe
pow -max -0x1.fffffffffffffp+52
pow -max -0x1.fffffffffffffp+53
pow -max -0x1.fffffffffffffffep+63
pow -max -0x1.fffffffffffffffep+64
pow -max -0x1.ffffffffffffffffffffffffff8p+105
pow -max -0x1.ffffffffffffffffffffffffff8p+106
pow -max -0x1.ffffffffffffffffffffffffffffp+112
pow -max -0x1.ffffffffffffffffffffffffffffp+113
pow -max -max

pow -max 0xffffff
pow -max 0x1fffffe
pow -max 0x1.fffffffffffffp+52
pow -max 0x1.fffffffffffffp+53
pow -max 0x1.fffffffffffffffep+63
pow -max 0x1.fffffffffffffffep+64
pow -max 0x1.ffffffffffffffffffffffffff8p+105
pow -max 0x1.ffffffffffffffffffffffffff8p+106
pow -max 0x1.ffffffffffffffffffffffffffffp+112
pow -max 0x1.ffffffffffffffffffffffffffffp+113
pow -max max

pow -0.5 126
pow -0.5 127
pow -0.5 -126
pow -0.5 -127

pow -0.5 -0xffffff
pow -0.5 -0x1fffffe
pow -0.5 -0x1.fffffffffffffp+52
pow -0.5 -0x1.fffffffffffffp+53
pow -0.5 -0x1.fffffffffffffffep+63
pow -0.5 -0x1.fffffffffffffffep+64
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 -max

pow -0.5 0xffffff
pow -0.5 0x1fffffe
pow -0.5 0x1.fffffffffffffp+52
pow -0.5 0x1.fffffffffffffp+53
pow -0.5 0x1.fffffffffffffffep+63
pow -0.5 0x1.fffffffffffffffep+64
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
pow -0.5 max

pow -min -2
pow -min -3
pow -min 1
pow -min 2
pow -min 3

pow -min -0xffffff
pow -min -0x1fffffe
pow -min -0x1.fffffffffffffp+52
pow -min -0x1.fffffffffffffp+53
pow -min -0x1.fffffffffffffffep+63
pow -min -0x1.fffffffffffffffep+64
pow -min -0x1.ffffffffffffffffffffffffff8p+105
pow -min -0x1.ffffffffffffffffffffffffff8p+106
pow -min -0x1.ffffffffffffffffffffffffffffp+112
pow -min -0x1.ffffffffffffffffffffffffffffp+113
pow -min -max

pow -min 0xffffff
pow -min 0x1fffffe
pow -min 0x1.fffffffffffffp+52
pow -min 0x1.fffffffffffffp+53
pow -min 0x1.fffffffffffffffep+63
pow -min 0x1.fffffffffffffffep+64
pow -min 0x1.ffffffffffffffffffffffffff8p+105
pow -min 0x1.ffffffffffffffffffffffffff8p+106
pow -min 0x1.ffffffffffffffffffffffffffffp+112
pow -min 0x1.ffffffffffffffffffffffffffffp+113
pow -min max

pow 0x0.ffffffp0 10
pow 0x0.ffffffp0 100
pow 0x0.ffffffp0 1000
pow 0x0.ffffffp0 0x1p24
pow 0x0.ffffffp0 0x1p30
pow 0x0.ffffffp0 0x1.234566p30
pow 0x0.ffffffp0 -10
pow 0x0.ffffffp0 -100
pow 0x0.ffffffp0 -1000
pow 0x0.ffffffp0 -0x1p24
pow 0x0.ffffffp0 -0x1p30
pow 0x0.ffffffp0 -0x1.234566p30
pow 0x1.000002p0 0x1p24
pow 0x1.000002p0 0x1.234566p29
pow 0x1.000002p0 -0x1.234566p29

pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61

pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76

pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125

pow 1e4932 0.75
pow 1e4928 0.75
pow 1e4924 0.75
pow 1e4920 0.75
pow 10.0 4932.0
pow 10.0 4931.0
pow 10.0 4930.0
pow 10.0 4929.0
pow 10.0 -4931.0
pow 10.0 -4930.0
pow 10.0 -4929.0
pow 1e27 182.0
pow 1e27 -182.0

pow min_subnorm min_subnorm
pow min_subnorm -min_subnorm
pow max min_subnorm
pow max -min_subnorm
pow 0.99 min_subnorm
pow 0.99 -min_subnorm
pow 1.01 min_subnorm
pow 1.01 -min_subnorm

pow 2.0 -100000.0

pow 1.0625 1.125
pow 1.5 1.03125

sin 0
sin -0
sin pi/6
sin -pi/6
sin pi/2
sin -pi/2
sin 0.75
sin 0x1p65
sin -0x1p65
sin 0x1.7f4134p+103
sin 0.80190127184058835
sin 2.522464e-1
sin 1e22
sin 0x1p1023
sin 0x1p16383
sin 0x1p+120
sin 0x1p+127
sin 0x1.fffff8p+127
sin 0x1.fffffep+127
sin 0x1p+50
sin 0x1p+28
sin 0.93340582292648832662962377071381
sin 2.3328432680770916363144351635128
sin 3.7439477503636453548097051680088
sin 3.9225160069792437411706487182528
sin 4.0711651639931289992091478779912
sin 4.7858438478542097982426639646292
sin 5.9840767662578002727968851104379
sin 1
sin 2
sin 3
sin 4
sin 5
sin 6
sin 7
sin 8
sin 9
sin 10

sincos 0
sincos -0
sincos pi/2
sincos pi/6
sincos pi/3
sincos 0.75
sincos 0x1p65
sincos -0x1p65
sincos 0.80190127184058835
sincos 1e22
sincos 0x1p1023
sincos 0x1p16383
sincos 0x1p+120
sincos 0x1p+127
sincos 0x1.fffff8p+127
sincos 0x1.fffffep+127
sincos 0x1p+50
sincos 0x1p+28

sinh 0
sinh -0
sinh 0.75
sinh 0x8p-32
sinh 22
sinh 23
sinh 24

sqrt 0
sqrt -0
sqrt 2209
sqrt 4
sqrt 2
sqrt 0.25
sqrt 6642.25
sqrt 15190.5625
sqrt 0.75
sqrt 0x1.fffffffffffffp+1023
sqrt 0x1.ffffffffffffbp+1023
sqrt 0x1.ffffffffffff7p+1023
sqrt 0x1.ffffffffffff3p+1023
sqrt 0x1.fffffffffffefp+1023
sqrt 0x1.fffffffffffebp+1023
sqrt 0x1.fffffffffffe7p+1023
sqrt 0x1.fffffffffffe3p+1023
sqrt 0x1.fffffffffffdfp+1023
sqrt 0x1.fffffffffffdbp+1023
sqrt 0x1.fffffffffffd7p+1023
sqrt 0x1.0000000000003p-1022
sqrt 0x1.0000000000007p-1022
sqrt 0x1.000000000000bp-1022
sqrt 0x1.000000000000fp-1022
sqrt 0x1.0000000000013p-1022
sqrt 0x1.0000000000017p-1022
sqrt 0x1.000000000001bp-1022
sqrt 0x1.000000000001fp-1022
sqrt 0x1.0000000000023p-1022
sqrt 0x1.0000000000027p-1022
sqrt 0x1.000000000002bp-1022
sqrt 0x1.000000000002fp-1022
sqrt 0x1.0000000000033p-1022
sqrt 0x1.0000000000037p-1022
sqrt 0x1.7167bc36eaa3bp+6
sqrt 0x1.7570994273ad7p+6
sqrt 0x1.7dae969442fe6p+6
sqrt 0x1.7f8444fcf67e5p+6
sqrt 0x1.8364650e63a54p+6
sqrt 0x1.85bedd274edd8p+6
sqrt 0x1.8609cf496ab77p+6
sqrt 0x1.873849c70a375p+6
sqrt 0x1.8919c962cbaaep+6
sqrt 0x1.8de4493e22dc6p+6
sqrt 0x1.924829a17a288p+6
sqrt 0x1.92702cd992f12p+6
sqrt 0x1.92b763a8311fdp+6
sqrt 0x1.947da013c7293p+6
sqrt 0x1.9536091c494d2p+6
sqrt 0x1.61b04c6p-1019
sqrt 0x1.93789f1p-1018
sqrt 0x1.a1989b4p-1018
sqrt 0x1.f93bc9p-1018
sqrt 0x1.2f675e3p-1017
sqrt 0x1.a158508p-1017
sqrt 0x1.cd31f078p-1017
sqrt 0x1.33b43b08p-1016
sqrt 0x1.6e66a858p-1016
sqrt 0x1.8661cbf8p-1016
sqrt 0x1.bbb221b4p-1016
sqrt 0x1.c4942f3cp-1016
sqrt 0x1.dbb258c8p-1016
sqrt 0x1.57103ea4p-1015
sqrt 0x1.9b294f88p-1015
sqrt 0x1.0000000000001p+0
sqrt 0x1.fffffffffffffp-1

tan 0
tan -0
tan pi/4
tan 0.75
tan 0x1p65
tan -0x1p65
tan 0xc.9p-4
tan 0xc.908p-4
tan 0xc.90cp-4
tan 0xc.90ep-4
tan 0xc.90fp-4
tan 0xc.90f8p-4
tan 0xc.90fcp-4
tan 0xc.90fdp-4
tan 0xc.90fd8p-4
tan 0xc.90fdap-4
tan 0xc.ap-4
tan 0xc.98p-4
tan 0xc.94p-4
tan 0xc.92p-4
tan 0xc.91p-4
tan 0xc.90fep-4
tan 0xc.90fdcp-4
tan 0xc.90fdbp-4
tan -0xc.9p-4
tan -0xc.908p-4
tan -0xc.90cp-4
tan -0xc.90ep-4
tan -0xc.90fp-4
tan -0xc.90f8p-4
tan -0xc.90fcp-4
tan -0xc.90fdp-4
tan -0xc.90fd8p-4
tan -0xc.90fdap-4
tan -0xc.ap-4
tan -0xc.98p-4
tan -0xc.94p-4
tan -0xc.92p-4
tan -0xc.91p-4
tan -0xc.90fep-4
tan -0xc.90fdcp-4
tan -0xc.90fdbp-4
tan 1e22
tan 0x1p1023
tan 0x1p16383
tan 1
tan 2
tan 3
tan 4
tan 5
tan 6
tan 7
tan 8
tan 9
tan 10

tanh 0
tanh -0
tanh 0.75
tanh -0.75
tanh 1.0
tanh -1.0
tanh 0x1p-57

tgamma 0.5
tgamma -0.5

tgamma 1
tgamma 2
tgamma 3
tgamma 4
tgamma 5
tgamma 6
tgamma 7
tgamma 8
tgamma 9
tgamma 10

tgamma 0.7
tgamma 1.2

tgamma 1.5
tgamma 2.5
tgamma 3.5
tgamma 4.5
tgamma 5.5
tgamma 6.5
tgamma 7.5
tgamma 8.5
tgamma 9.5
tgamma -1.5
tgamma -2.5
tgamma -3.5
tgamma -4.5
tgamma -5.5
tgamma -6.5
tgamma -7.5
tgamma -8.5
tgamma -9.5
tgamma 0x1p-24
tgamma -0x1p-24
tgamma 0x1p-53
tgamma -0x1p-53
tgamma 0x1p-64
tgamma -0x1p-64
tgamma 0x1p-106
tgamma -0x1p-106
tgamma 0x1p-113
tgamma -0x1p-113
tgamma 0x1p-127
tgamma -0x1p-127
tgamma 0x1p-128
tgamma -0x1p-128
tgamma 0x1p-149
tgamma -0x1p-149
tgamma 0x1p-1023
tgamma -0x1p-1023
tgamma 0x1p-1024
tgamma -0x1p-1024
tgamma 0x1p-1074
tgamma -0x1p-1074
tgamma 0x1p-16383
tgamma -0x1p-16383
tgamma 0x1p-16384
tgamma -0x1p-16384
tgamma 0x1p-16445
tgamma -0x1p-16445
tgamma 0x1p-16494
tgamma -0x1p-16494
tgamma 0x8.00001p0
tgamma 0x7.fffff8p0
tgamma 0x7.000008p0
tgamma 0x6.fffff8p0
tgamma 0x6.000008p0
tgamma 0x5.fffff8p0
tgamma 0x5.000008p0
tgamma 0x4.fffff8p0
tgamma 0x4.000008p0
tgamma 0x3.fffffcp0
tgamma 0x3.000004p0
tgamma 0x2.fffffcp0
tgamma 0x2.000004p0
tgamma 0x1.fffffep0
tgamma 0x1.000002p0
tgamma 0x0.ffffffp0
tgamma -0x0.ffffffp0
tgamma -0x1.000002p0
tgamma -0x1.fffffep0
tgamma -0x2.000004p0
tgamma -0x2.fffffcp0
tgamma -0x3.000004p0
tgamma -0x3.fffffcp0
tgamma -0x4.000008p0
tgamma -0x4.fffff8p0
tgamma -0x5.000008p0
tgamma -0x5.fffff8p0
tgamma -0x6.000008p0
tgamma -0x6.fffff8p0
tgamma -0x7.000008p0
tgamma -0x7.fffff8p0
tgamma -0x8.00001p0
tgamma -0x9.fffffp0
tgamma -0xa.00001p0
tgamma -0x13.ffffep0
tgamma -0x14.00002p0
tgamma -0x1d.ffffep0
tgamma -0x1e.00002p0
tgamma -0x27.ffffcp0
tgamma -0x28.00004p0
tgamma -0x28.ffffcp0
tgamma -0x29.00004p0
tgamma -0x29.ffffcp0
tgamma -0x2a.00004p0
tgamma 0x8.0000000000008p0
tgamma 0x7.ffffffffffffcp0
tgamma 0x7.0000000000004p0
tgamma 0x6.ffffffffffffcp0
tgamma 0x6.0000000000004p0
tgamma 0x5.ffffffffffffcp0
tgamma 0x5.0000000000004p0
tgamma 0x4.ffffffffffffcp0
tgamma 0x4.0000000000004p0
tgamma 0x3.ffffffffffffep0
tgamma 0x3.0000000000002p0
tgamma 0x2.ffffffffffffep0
tgamma 0x2.0000000000002p0
tgamma 0x1.fffffffffffffp0
tgamma 0x1.0000000000001p0
tgamma 0x0.fffffffffffff8p0
tgamma -0x0.fffffffffffff8p0
tgamma -0x1.0000000000001p0
tgamma -0x1.fffffffffffffp0
tgamma -0x2.0000000000002p0
tgamma -0x2.ffffffffffffep0
tgamma -0x3.0000000000002p0
tgamma -0x3.ffffffffffffep0
tgamma -0x4.0000000000004p0
tgamma -0x4.ffffffffffffcp0
tgamma -0x5.0000000000004p0
tgamma -0x5.ffffffffffffcp0
tgamma -0x6.0000000000004p0
tgamma -0x6.ffffffffffffcp0
tgamma -0x7.0000000000004p0
tgamma -0x7.ffffffffffffcp0
tgamma -0x8.0000000000008p0
tgamma -0x9.ffffffffffff8p0
tgamma -0xa.0000000000008p0
tgamma -0x13.ffffffffffffp0
tgamma -0x14.000000000001p0
tgamma -0x1d.ffffffffffffp0
tgamma -0x1e.000000000001p0
tgamma -0x27.fffffffffffep0
tgamma -0x28.000000000002p0
tgamma -0x28.fffffffffffep0
tgamma -0x29.000000000002p0
tgamma -0x29.fffffffffffep0
tgamma -0x2a.000000000002p0
tgamma -0x31.fffffffffffep0
tgamma -0x32.000000000002p0
tgamma -0x63.fffffffffffcp0
tgamma -0x64.000000000004p0
tgamma -0x95.fffffffffff8p0
tgamma -0x96.000000000008p0
tgamma -0xb4.fffffffffff8p0
tgamma -0xb5.000000000008p0
tgamma -0xb5.fffffffffff8p0
tgamma -0xb6.000000000008p0
tgamma -0xb6.fffffffffff8p0
tgamma -0xb7.000000000008p0
tgamma -0xb7.fffffffffff8p0
tgamma -0xb8.000000000008p0
tgamma 0x8.00000000000000000000000004p0
tgamma 0x7.fffffffffffffffffffffffffep0
tgamma 0x7.00000000000000000000000002p0
tgamma 0x6.fffffffffffffffffffffffffep0
tgamma 0x6.00000000000000000000000002p0
tgamma 0x5.fffffffffffffffffffffffffep0
tgamma 0x5.00000000000000000000000002p0
tgamma 0x4.fffffffffffffffffffffffffep0
tgamma 0x4.00000000000000000000000002p0
tgamma 0x3.ffffffffffffffffffffffffffp0
tgamma 0x3.00000000000000000000000001p0
tgamma 0x2.ffffffffffffffffffffffffffp0
tgamma 0x2.00000000000000000000000001p0
tgamma 0x1.ffffffffffffffffffffffffff8p0
tgamma 0x1.000000000000000000000000008p0
tgamma 0x0.ffffffffffffffffffffffffffcp0
tgamma -0x0.ffffffffffffffffffffffffffcp0
tgamma -0x1.000000000000000000000000008p0
tgamma -0x1.ffffffffffffffffffffffffff8p0
tgamma -0x2.00000000000000000000000001p0
tgamma -0x2.ffffffffffffffffffffffffffp0
tgamma -0x3.00000000000000000000000001p0
tgamma -0x3.ffffffffffffffffffffffffffp0
tgamma -0x4.00000000000000000000000002p0
tgamma -0x4.fffffffffffffffffffffffffep0
tgamma -0x5.00000000000000000000000002p0
tgamma -0x5.fffffffffffffffffffffffffep0
tgamma -0x6.00000000000000000000000002p0
tgamma -0x6.fffffffffffffffffffffffffep0
tgamma -0x7.00000000000000000000000002p0
tgamma -0x7.fffffffffffffffffffffffffep0
tgamma -0x8.00000000000000000000000004p0
tgamma -0x9.fffffffffffffffffffffffffcp0
tgamma -0xa.00000000000000000000000004p0
tgamma -0x13.fffffffffffffffffffffffff8p0
tgamma -0x14.00000000000000000000000008p0
tgamma -0x1d.fffffffffffffffffffffffff8p0
tgamma -0x1e.00000000000000000000000008p0
tgamma -0x27.fffffffffffffffffffffffffp0
tgamma -0x28.0000000000000000000000001p0
tgamma -0x28.fffffffffffffffffffffffffp0
tgamma -0x29.0000000000000000000000001p0
tgamma -0x29.fffffffffffffffffffffffffp0
tgamma -0x2a.0000000000000000000000001p0
tgamma -0x31.fffffffffffffffffffffffffp0
tgamma -0x32.0000000000000000000000001p0
tgamma -0x63.ffffffffffffffffffffffffep0
tgamma -0x64.0000000000000000000000002p0
tgamma -0x95.ffffffffffffffffffffffffcp0
tgamma -0x96.0000000000000000000000004p0
tgamma -0xb4.ffffffffffffffffffffffffcp0
tgamma -0xb5.0000000000000000000000004p0
tgamma -0xb5.ffffffffffffffffffffffffcp0
tgamma -0xb6.0000000000000000000000004p0
tgamma -0xb6.ffffffffffffffffffffffffcp0
tgamma -0xb7.0000000000000000000000004p0
tgamma -0xb7.ffffffffffffffffffffffffcp0
tgamma -0xb8.0000000000000000000000004p0
tgamma -0xbb.ffffffffffffffffffffffffcp0
tgamma -0xbc.0000000000000000000000004p0
tgamma -0xbc.ffffffffffffffffffffffffcp0
tgamma -0xbd.0000000000000000000000004p0
tgamma -0xbd.ffffffffffffffffffffffffcp0
tgamma -0xbe.0000000000000000000000004p0
tgamma -0xbe.ffffffffffffffffffffffffcp0
tgamma -0xbf.0000000000000000000000004p0
tgamma 0x8.000000000000001p0
tgamma 0x7.fffffffffffffff8p0
tgamma 0x7.0000000000000008p0
tgamma 0x6.fffffffffffffff8p0
tgamma 0x6.0000000000000008p0
tgamma 0x5.fffffffffffffff8p0
tgamma 0x5.0000000000000008p0
tgamma 0x4.fffffffffffffff8p0
tgamma 0x4.0000000000000008p0
tgamma 0x3.fffffffffffffffcp0
tgamma 0x3.0000000000000004p0
tgamma 0x2.fffffffffffffffcp0
tgamma 0x2.0000000000000004p0
tgamma 0x1.fffffffffffffffep0
tgamma 0x1.0000000000000002p0
tgamma 0x0.ffffffffffffffffp0
tgamma -0x0.ffffffffffffffffp0
tgamma -0x1.0000000000000002p0
tgamma -0x1.fffffffffffffffep0
tgamma -0x2.0000000000000004p0
tgamma -0x2.fffffffffffffffcp0
tgamma -0x3.0000000000000004p0
tgamma -0x3.fffffffffffffffcp0
tgamma -0x4.0000000000000008p0
tgamma -0x4.fffffffffffffff8p0
tgamma -0x5.0000000000000008p0
tgamma -0x5.fffffffffffffff8p0
tgamma -0x6.0000000000000008p0
tgamma -0x6.fffffffffffffff8p0
tgamma -0x7.0000000000000008p0
tgamma -0x7.fffffffffffffff8p0
tgamma -0x8.000000000000001p0
tgamma -0x9.fffffffffffffffp0
tgamma -0xa.000000000000001p0
tgamma -0x13.ffffffffffffffep0
tgamma -0x14.000000000000002p0
tgamma -0x1d.ffffffffffffffep0
tgamma -0x1e.000000000000002p0
tgamma -0x27.ffffffffffffffcp0
tgamma -0x28.000000000000004p0
tgamma -0x28.ffffffffffffffcp0
tgamma -0x29.000000000000004p0
tgamma -0x29.ffffffffffffffcp0
tgamma -0x2a.000000000000004p0
tgamma -0x31.ffffffffffffffcp0
tgamma -0x32.000000000000004p0
tgamma -0x63.ffffffffffffff8p0
tgamma -0x64.000000000000008p0
tgamma -0x95.ffffffffffffffp0
tgamma -0x96.00000000000001p0
tgamma -0xb4.ffffffffffffffp0
tgamma -0xb5.00000000000001p0
tgamma -0xb5.ffffffffffffffp0
tgamma -0xb6.00000000000001p0
tgamma -0xb6.ffffffffffffffp0
tgamma -0xb7.00000000000001p0
tgamma -0xb7.ffffffffffffffp0
tgamma -0xb8.00000000000001p0
tgamma -0xbb.ffffffffffffffp0
tgamma -0xbc.00000000000001p0
tgamma -0xbc.ffffffffffffffp0
tgamma -0xbd.00000000000001p0
tgamma -0xbd.ffffffffffffffp0
tgamma -0xbe.00000000000001p0
tgamma -0xbe.ffffffffffffffp0
tgamma -0xbf.00000000000001p0
tgamma -0xf9.ffffffffffffffp0
tgamma -0xfa.00000000000001p0
tgamma -0x1f3.fffffffffffffep0
tgamma -0x1f4.00000000000002p0
tgamma -0x2ed.fffffffffffffcp0
tgamma -0x2ee.00000000000004p0
tgamma -0x3e7.fffffffffffffcp0
tgamma -0x3e8.00000000000004p0
tgamma -0x4e1.fffffffffffff8p0
tgamma -0x4e2.00000000000008p0
tgamma -0x5db.fffffffffffff8p0
tgamma -0x5dc.00000000000008p0
tgamma -0x6d5.fffffffffffff8p0
tgamma -0x6d6.00000000000008p0
tgamma -0x6e2.fffffffffffff8p0
tgamma -0x6e3.00000000000008p0
tgamma -0x6e3.fffffffffffff8p0
tgamma -0x6e4.00000000000008p0
tgamma -0x6e4.fffffffffffff8p0
tgamma -0x6e5.00000000000008p0
tgamma -0x6e5.fffffffffffff8p0
tgamma -0x6e6.00000000000008p0
tgamma 0x8.0000000000000000000000000008p0
tgamma 0x7.fffffffffffffffffffffffffffcp0
tgamma 0x7.0000000000000000000000000004p0
tgamma 0x6.fffffffffffffffffffffffffffcp0
tgamma 0x6.0000000000000000000000000004p0
tgamma 0x5.fffffffffffffffffffffffffffcp0
tgamma 0x5.0000000000000000000000000004p0
tgamma 0x4.fffffffffffffffffffffffffffcp0
tgamma 0x4.0000000000000000000000000004p0
tgamma 0x3.fffffffffffffffffffffffffffep0
tgamma 0x3.0000000000000000000000000002p0
tgamma 0x2.fffffffffffffffffffffffffffep0
tgamma 0x2.0000000000000000000000000002p0
tgamma 0x1.ffffffffffffffffffffffffffffp0
tgamma 0x1.0000000000000000000000000001p0
tgamma 0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x0.ffffffffffffffffffffffffffff8p0
tgamma -0x1.0000000000000000000000000001p0
tgamma -0x1.ffffffffffffffffffffffffffffp0
tgamma -0x2.0000000000000000000000000002p0
tgamma -0x2.fffffffffffffffffffffffffffep0
tgamma -0x3.0000000000000000000000000002p0
tgamma -0x3.fffffffffffffffffffffffffffep0
tgamma -0x4.0000000000000000000000000004p0
tgamma -0x4.fffffffffffffffffffffffffffcp0
tgamma -0x5.0000000000000000000000000004p0
tgamma -0x5.fffffffffffffffffffffffffffcp0
tgamma -0x6.0000000000000000000000000004p0
tgamma -0x6.fffffffffffffffffffffffffffcp0
tgamma -0x7.0000000000000000000000000004p0
tgamma -0x7.fffffffffffffffffffffffffffcp0
tgamma -0x8.0000000000000000000000000008p0
tgamma -0x9.fffffffffffffffffffffffffff8p0
tgamma -0xa.0000000000000000000000000008p0
tgamma -0x13.fffffffffffffffffffffffffffp0
tgamma -0x14.000000000000000000000000001p0
tgamma -0x1d.fffffffffffffffffffffffffffp0
tgamma -0x1e.000000000000000000000000001p0
tgamma -0x27.ffffffffffffffffffffffffffep0
tgamma -0x28.000000000000000000000000002p0
tgamma -0x28.ffffffffffffffffffffffffffep0
tgamma -0x29.000000000000000000000000002p0
tgamma -0x29.ffffffffffffffffffffffffffep0
tgamma -0x2a.000000000000000000000000002p0
tgamma -0x31.ffffffffffffffffffffffffffep0
tgamma -0x32.000000000000000000000000002p0
tgamma -0x63.ffffffffffffffffffffffffffcp0
tgamma -0x64.000000000000000000000000004p0
tgamma -0x95.ffffffffffffffffffffffffff8p0
tgamma -0x96.000000000000000000000000008p0
tgamma -0xb4.ffffffffffffffffffffffffff8p0
tgamma -0xb5.000000000000000000000000008p0
tgamma -0xb5.ffffffffffffffffffffffffff8p0
tgamma -0xb6.000000000000000000000000008p0
tgamma -0xb6.ffffffffffffffffffffffffff8p0
tgamma -0xb7.000000000000000000000000008p0
tgamma -0xb7.ffffffffffffffffffffffffff8p0
tgamma -0xb8.000000000000000000000000008p0
tgamma -0xbb.ffffffffffffffffffffffffff8p0
tgamma -0xbc.000000000000000000000000008p0
tgamma -0xbc.ffffffffffffffffffffffffff8p0
tgamma -0xbd.000000000000000000000000008p0
tgamma -0xbd.ffffffffffffffffffffffffff8p0
tgamma -0xbe.000000000000000000000000008p0
tgamma -0xbe.ffffffffffffffffffffffffff8p0
tgamma -0xbf.000000000000000000000000008p0
tgamma -0xf9.ffffffffffffffffffffffffff8p0
tgamma -0xfa.000000000000000000000000008p0
tgamma -0x1f3.ffffffffffffffffffffffffffp0
tgamma -0x1f4.00000000000000000000000001p0
tgamma -0x2ed.fffffffffffffffffffffffffep0
tgamma -0x2ee.00000000000000000000000002p0
tgamma -0x3e7.fffffffffffffffffffffffffep0
tgamma -0x3e8.00000000000000000000000002p0
tgamma -0x4e1.fffffffffffffffffffffffffcp0
tgamma -0x4e2.00000000000000000000000004p0
tgamma -0x5db.fffffffffffffffffffffffffcp0
tgamma -0x5dc.00000000000000000000000004p0
tgamma -0x6d5.fffffffffffffffffffffffffcp0
tgamma -0x6d6.00000000000000000000000004p0
tgamma -0x6e2.fffffffffffffffffffffffffcp0
tgamma -0x6e3.00000000000000000000000004p0
tgamma -0x6e3.fffffffffffffffffffffffffcp0
tgamma -0x6e4.00000000000000000000000004p0
tgamma -0x6e4.fffffffffffffffffffffffffcp0
tgamma -0x6e5.00000000000000000000000004p0
tgamma -0x6e5.fffffffffffffffffffffffffcp0
tgamma -0x6e6.00000000000000000000000004p0
tgamma -0x6eb.fffffffffffffffffffffffffcp0
tgamma -0x6ec.00000000000000000000000004p0
tgamma -0x6ec.fffffffffffffffffffffffffcp0
tgamma -0x6ed.00000000000000000000000004p0
tgamma -0x6ed.fffffffffffffffffffffffffcp0
tgamma -0x6ee.00000000000000000000000004p0
tgamma -0x6ee.fffffffffffffffffffffffffcp0
tgamma -0x6ef.00000000000000000000000004p0
tgamma -0x1.0a32a2p+5
tgamma -0x1.5800000080001p+7
tgamma 18.5
tgamma 19.5
tgamma 23.5
tgamma 29.5
tgamma 30.5
tgamma 31.5
tgamma 32.5
tgamma 33.5
tgamma 34.5
tgamma 0x2.30a43cp+4
tgamma 0x2.30a44p+4
tgamma 0xa.b9fd72b0fb238p+4
tgamma 0xa.b9fd72b0fb24p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
tgamma 0x6.db8c603359a97108p+8
tgamma 0x6.db8c603359a9711p+8
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
tgamma 1e3
tgamma -100000.5

y0 0.125
y0 0.75
y0 1.0
y0 1.5
y0 2.0
y0 8.0
y0 10.0
y0 0x1.3ffp+74
y0 0x1.ff00000000002p+840
y0 0x1p1023
y0 0x1p16382
y0 0x1p16383
y0 0x1p-10
y0 0x1p-20
y0 0x1p-30
y0 0x1p-40
y0 0x1p-50
y0 0x1p-60
y0 0x1p-70
y0 0x1p-80
y0 0x1p-90
y0 0x1p-100
y0 0x1p-110

y1 0.125
y1 0.75
y1 1.0
y1 1.5
y1 2.0
y1 8.0
y1 10.0
y1 0x1.27e204p+99
y1 0x1.001000001p+593
y1 0x1p1023
y1 0x1p16382
y1 0x1p16383
y1 0x1p-10
y1 0x1p-20
y1 0x1p-30
y1 0x1p-40
y1 0x1p-50
y1 0x1p-60
y1 0x1p-70
y1 0x1p-80
y1 0x1p-90
y1 0x1p-100
y1 0x1p-110

# yn (0, x) == y0 (x).
yn 0 0.125
yn 0 0.75
yn 0 1.0
yn 0 1.5
yn 0 2.0
yn 0 8.0
yn 0 10.0

# yn (1, x) == y1 (x).
yn 1 0.125
yn 1 0.75
yn 1 1.0
yn 1 1.5
yn 1 2.0
yn 1 8.0
yn 1 10.0

# yn (-1, x) == -y1 (x).
yn -1 1.0

# yn (3, x).
yn 3 0.125
yn 3 0.75
yn 3 1.0
yn 3 2.0
yn 3 10.0

# yn (10, x).
yn 10 0.125
yn 10 0.75
yn 10 1.0
yn 10 2.0
yn 10 10.0

yn -10 1.0

yn 10 min

yn 2 0x1.ffff62p+99
yn 2 0x1p127
yn 2 0x1p1023
yn 2 0x1p16383