1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
|
@node Character Set Handling, Locales, String and Array Utilities, Top
@c %MENU% Support for extended character sets
@chapter Character Set Handling
@ifnottex
@macro cal{text}
\text\
@end macro
@end ifnottex
Character sets used in the early days of computing had only six, seven,
or eight bits for each character: there was never a case where more than
eight bits (one byte) were used to represent a single character. The
limitations of this approach became more apparent as more people
grappled with non-Roman character sets, where not all the characters
that make up a language's character set can be represented by @math{2^8}
choices. This chapter shows the functionality which was added to the C
library to correctly support multiple character sets.
@menu
* Extended Char Intro:: Introduction to Extended Characters.
* Charset Function Overview:: Overview about Character Handling
Functions.
* Restartable multibyte conversion:: Restartable multibyte conversion
Functions.
* Non-reentrant Conversion:: Non-reentrant Conversion Function.
* Generic Charset Conversion:: Generic Charset Conversion.
@end menu
@node Extended Char Intro
@section Introduction to Extended Characters
A variety of solutions to overcome the differences between
character sets with a 1:1 relation between bytes and characters and
character sets with ratios of 2:1 or 4:1 exist. The remainder of this
section gives a few examples to help understand the design decisions
made while developing the functionality of the @w{C library}.
@cindex internal representation
A distinction we have to make right away is between internal and
external representation. @dfn{Internal representation} means the
representation used by a program while keeping the text in memory.
External representations are used when text is stored or transmitted
through whatever communication channel. Examples of external
representations include files lying in a directory that are going to be
read and parsed.
Traditionally there was no difference between the two representations.
It was equally comfortable and useful to use the same one-byte
representation internally and externally. This changes with more and
larger character sets.
One of the problems to overcome with the internal representation is
handling text which is externally encoded using different character
sets. Assume a program which reads two texts and compares them using
some metric. The comparison can be usefully done only if the texts are
internally kept in a common format.
@cindex wide character
For such a common format (@math{=} character set) eight bits are certainly
no longer enough. So the smallest entity will have to grow: @dfn{wide
characters} will now be used. Instead of one byte, two or four will
be used instead. (Three are not good to address in memory and more
than four bytes seem not to be necessary).
@cindex Unicode
@cindex ISO 10646
As shown in some other part of this manual,
@c !!! Ahem, wide char string functions are not yet covered -- drepper
there exists a completely new family of functions which can handle texts
of this kind in memory. The most commonly used character set for such
internal wide character representations are Unicode and @w{ISO 10646}.
The former is a subset of the latter and used when wide characters are
chosen to by 2 bytes (@math{= 16} bits) wide. The standard names of the
@cindex UCS2
@cindex UCS4
encodings used in these cases are UCS2 (@math{= 16} bits) and UCS4
(@math{= 32} bits).
To represent wide characters the @code{char} type is not suitable. For
this reason the @w{ISO C} standard introduces a new type which is
designed to keep one character of a wide character string. To maintain
the similarity there is also a type corresponding to @code{int} for
those functions which take a single wide character.
@comment stddef.h
@comment ISO
@deftp {Data type} wchar_t
This data type is used as the base type for wide character strings.
I.e., arrays of objects of this type are the equivalent of @code{char[]}
for multibyte character strings. The type is defined in @file{stddef.h}.
The @w{ISO C89} standard, where this type was introduced, does not say
anything specific about the representation. It only requires that this
type is capable to store all elements of the basic character set.
Therefore it would be legitimate to define @code{wchar_t} and
@code{char}. This might make sense for embedded systems.
But for GNU systems this type is always 32 bits wide. It is therefore
capable to represent all UCS4 value therefore covering all of @w{ISO
10646}. Some Unix systems define @code{wchar_t} as a 16 bit type and
thereby follow Unicode very strictly. This is perfectly fine with the
standard but it also means that to represent all characters from Unicode
and @w{ISO 10646} one has to use surrogate character which is in fact a
multi-wide-character encoding. But this contradicts the purpose of the
@code{wchar_t} type.
@end deftp
@comment wchar.h
@comment ISO
@deftp {Data type} wint_t
@code{wint_t} is a data type used for parameters and variables which
contain a single wide character. As the name already suggests it is the
equivalent to @code{int} when using the normal @code{char} strings. The
types @code{wchar_t} and @code{wint_t} have often the same
representation if their size if 32 bits wide but if @code{wchar_t} is
defined as @code{char} the type @code{wint_t} must be defined as
@code{int} due to the parameter promotion.
@pindex wchar.h
This type is defined in @file{wchar.h} and got introduced in the second
amendment to @w{ISO C 89}.
@end deftp
As there are for the @code{char} data type there also exist macros
specifying the minimum and maximum value representable in an object of
type @code{wchar_t}.
@comment wchar.h
@comment ISO
@deftypevr Macro wint_t WCHAR_MIN
The macro @code{WCHAR_MIN} evaluates to the minimum value representable
by an object of type @code{wint_t}.
This macro got introduced in the second amendment to @w{ISO C89}.
@end deftypevr
@comment wchar.h
@comment ISO
@deftypevr Macro wint_t WCHAR_MAX
The macro @code{WCHAR_MIN} evaluates to the maximum value representable
by an object of type @code{wint_t}.
This macro got introduced in the second amendment to @w{ISO C89}.
@end deftypevr
Another special wide character value is the equivalent to @code{EOF}.
@comment wchar.h
@comment ISO
@deftypevr Macro wint_t WEOF
The macro @code{WEOF} evaluates to a constant expression of type
@code{wint_t} whose value is different from any member of the extended
character set.
@code{WEOF} need not be the same value as @code{EOF} and unlike
@code{EOF} it also need @emph{not} be negative. I.e., sloppy code like
@smallexample
@{
int c;
...
while ((c = getc (fp)) < 0)
...
@}
@end smallexample
@noindent
has to be rewritten to explicitly use @code{WEOF} when wide characters
are used.
@smallexample
@{
wint_t c;
...
while ((c = wgetc (fp)) != WEOF)
...
@}
@end smallexample
@pindex wchar.h
This macro was introduced in the second amendment to @w{ISO C89} and is
defined in @file{wchar.h}.
@end deftypevr
These internal representations present problems when it comes to storing
and transmittal, since a single wide character consists of more
than one byte they are effected by byte-ordering. I.e., machines with
different endianesses would see different value accessing the same data.
This also applies for communication protocols which are all byte-based
and therefore the sender has to decide about splitting the wide
character in bytes. A last (but not least important) point is that wide
characters often require more storage space than an customized byte
oriented character set.
@cindex multibyte character
@cindex EBCDIC
For all the above reasons, an external encoding which is different
from the internal encoding is often used if the latter is UCS2 or UCS4.
The external encoding is byte-based and can be chosen appropriately for
the environment and for the texts to be handled. There exist a variety
of different character sets which can be used for this external
encoding. Information which will not be exhaustively presented
here--instead, a description of the major groups will suffice. All of
the ASCII-based character sets [_bkoz_: do you mean Roman character
sets? If not, what do you mean here?] fulfill one requirement: they are
"filesystem safe". This means that the character @code{'/'} is used in
the encoding @emph{only} to represent itself. Things are a bit
different for character sets like EBCDIC (Extended Binary Coded Decimal
Interchange Code, a character set family used by IBM) but if the
operation system does not understand EBCDIC directly the parameters to
system calls have to be converted first anyhow.
@itemize @bullet
@item
The simplest character sets are one-byte character sets. There can be
only up to 256 characters (for @w{8 bit} character sets) which is not
sufficient to cover all languages but might be sufficient to handle a
specific text. Another reason to choose this is because of constraints
from interaction with other programs (which might not be 8-bit clean).
@cindex ISO 2022
@item
The @w{ISO 2022} standard defines a mechanism for extended character
sets where one character @emph{can} be represented by more than one
byte. This is achieved by associating a state with the text. Embedded
in the text can be characters which can be used to change the state.
Each byte in the text might have a different interpretation in each
state. The state might even influence whether a given byte stands for a
character on its own or whether it has to be combined with some more
bytes.
@cindex EUC
@cindex SJIS
In most uses of @w{ISO 2022} the defined character sets do not allow
state changes which cover more than the next character. This has the
big advantage that whenever one can identify the beginning of the byte
sequence of a character one can interpret a text correctly. Examples of
character sets using this policy are the various EUC character sets
(used by Sun's operations systems, EUC-JP, EUC-KR, EUC-TW, and EUC-CN)
or SJIS (Shift JIS, a Japanese encoding).
But there are also character sets using a state which is valid for more
than one character and has to be changed by another byte sequence.
Examples for this are ISO-2022-JP, ISO-2022-KR, and ISO-2022-CN.
@item
@cindex ISO 6937
Early attempts to fix 8 bit character sets for other languages using the
Roman alphabet lead to character sets like @w{ISO 6937}. Here bytes
representing characters like the acute accent do not produce output
themselves: one has to combine them with other characters to get the
desired result. E.g., the byte sequence @code{0xc2 0x61} (non-spacing
acute accent, following by lower-case `a') to get the ``small a with
acute'' character. To get the acute accent character on its on one has
to write @code{0xc2 0x20} (the non-spacing acute followed by a space).
This type of characters sets is quite frequently used in embedded
systems such as video text.
@item
@cindex UTF-8
Instead of converting the Unicode or @w{ISO 10646} text used internally
it is often also sufficient to simply use an encoding different than
UCS2/UCS4. The Unicode and @w{ISO 10646} standards even specify such an
encoding: UTF-8. This encoding is able to represent all of @w{ISO
10464} 31 bits in a byte string of length one to seven.
@cindex UTF-7
There were a few other attempts to encode @w{ISO 10646} such as UTF-7
but UTF-8 is today the only encoding which should be used. In fact,
UTF-8 will hopefully soon be the only external which has to be
supported. It proves to be universally usable and the only disadvantage
is that it favor Roman languages very much by making the byte string
representation of other scripts (Cyrillic, Greek, Asian scripts) longer
than necessary if using a specific character set for these scripts.
Methods like the Unicode compression scheme can alleviate these
problems.
@end itemize
The question remaining is: how to select the character set or encoding
to use. The answer: you cannot decide about it yourself, it is decided
by the developers of the system or the majority of the users. Since the
goal is interoperability one has to use whatever the other people one
works with use. If there are no constraints the selection is based on
the requirements the expected circle of users will have. I.e., if a
project is expected to only be used in, say, Russia it is fine to use
KOI8-R or a similar character set. But if at the same time people from,
say, Greece are participating one should use a character set which allows
all people to collaborate.
The most widely useful solution seems to be: go with the most general
character set, namely @w{ISO 10646}. Use UTF-8 as the external encoding
and problems about users not being able to use their own language
adequately are a thing of the past.
One final comment about the choice of the wide character representation
is necessary at this point. We have said above that the natural choice
is using Unicode or @w{ISO 10646}. This is not specified in any
standard, though. The @w{ISO C} standard does not specify anything
specific about the @code{wchar_t} type. There might be systems where
the developers decided differently. Therefore one should as much as
possible avoid making assumption about the wide character representation
although GNU systems will always work as described above. If the
programmer uses only the functions provided by the C library to handle
wide character strings there should not be any compatibility problems
with other systems.
@node Charset Function Overview
@section Overview about Character Handling Functions
A Unix @w{C library} contains three different sets of functions in two
families to handle character set conversion. The one function family
is specified in the @w{ISO C} standard and therefore is portable even
beyond the Unix world.
The most commonly known set of functions, coming from the @w{ISO C89}
standard, is unfortunately the least useful one. In fact, these
functions should be avoided whenever possible, especially when
developing libraries (as opposed to applications).
The second family of functions got introduced in the early Unix standards
(XPG2) and is still part of the latest and greatest Unix standard:
@w{Unix 98}. It is also the most powerful and useful set of functions.
But we will start with the functions defined in the second amendment to
@w{ISO C89}.
@node Restartable multibyte conversion
@section Restartable Multibyte Conversion Functions
The @w{ISO C} standard defines functions to convert strings from a
multibyte representation to wide character strings. There are a number
of peculiarities:
@itemize @bullet
@item
The character set assumed for the multibyte encoding is not specified
as an argument to the functions. Instead the character set specified by
the @code{LC_CTYPE} category of the current locale is used; see
@ref{Locale Categories}.
@item
The functions handling more than one character at a time require NUL
terminated strings as the argument. I.e., converting blocks of text
does not work unless one can add a NUL byte at an appropriate place.
The GNU C library contains some extensions the standard which allow
specifying a size but basically they also expect terminated strings.
@end itemize
Despite these limitations the @w{ISO C} functions can very well be used
in many contexts. In graphical user interfaces, for instance, it is not
uncommon to have functions which require text to be displayed in a wide
character string if it is not simple ASCII. The text itself might come
from a file with translations and the user should decide about the
current locale which determines the translation and therefore also the
external encoding used. In such a situation (and many others) the
functions described here are perfect. If more freedom while performing
the conversion is necessary take a look at the @code{iconv} functions
(@pxref{Generic Charset Conversion})
@menu
* Selecting the Conversion:: Selecting the conversion and its properties.
* Keeping the state:: Representing the state of the conversion.
* Converting a Character:: Converting Single Characters.
* Converting Strings:: Converting Multibyte and Wide Character
Strings.
* Multibyte Conversion Example:: A Complete Multibyte Conversion Example.
@end menu
@node Selecting the Conversion
@subsection Selecting the conversion and its properties
We already said above that the currently selected locale for the
@code{LC_CTYPE} category decides about the conversion which is performed
by the functions we are about to describe. Each locale uses its own
character set (given as an argument to @code{localedef}) and this is the
one assumed as the external multibyte encoding. The wide character
character set always is UCS4, at least on GNU systems.
A characteristic of each multibyte character set is the maximum number
of bytes which can be necessary to represent one character. This
information is quite important when writing code which uses the
conversion functions. In the examples below we will see some examples.
The @w{ISO C} standard defines two macros which provide this information.
@comment limits.h
@comment ISO
@deftypevr Macro int MB_LEN_MAX
This macro specifies the maximum number of bytes in the multibyte
sequence for a single character in any of the supported locales. It is
a compile-time constant and it is defined in @file{limits.h}.
@pindex limits.h
@end deftypevr
@comment stdlib.h
@comment ISO
@deftypevr Macro int MB_CUR_MAX
@code{MB_CUR_MAX} expands into a positive integer expression that is the
maximum number of bytes in a multibyte character in the current locale.
The value is never greater than @code{MB_LEN_MAX}. Unlike
@code{MB_LEN_MAX} this macro need not be a compile-time constant and in
fact, in the GNU C library it is not.
@pindex stdlib.h
@code{MB_CUR_MAX} is defined in @file{stdlib.h}.
@end deftypevr
Two different macros are necessary since strictly @w{ISO C89} compilers
do not allow variable length array definitions but still it is desirable
to avoid dynamic allocation. This incomplete piece of code shows the
problem:
@smallexample
@{
char buf[MB_LEN_MAX];
ssize_t len = 0;
while (! feof (fp))
@{
fread (&buf[len], 1, MB_CUR_MAX - len, fp);
/* @r{... process} buf */
len -= used;
@}
@}
@end smallexample
The code in the inner loop is expected to have always enough bytes in
the array @var{buf} to convert one multibyte character. The array
@var{buf} has to be sized statically since many compilers do not allow a
variable size. The @code{fread} call makes sure that always
@code{MB_CUR_MAX} bytes are available in @var{buf}. Note that it isn't
a problem if @code{MB_CUR_MAX} is not a compile-time constant.
@node Keeping the state
@subsection Representing the state of the conversion
@cindex stateful
In the introduction of this chapter it was said that certain character
sets use a @dfn{stateful} encoding. I.e., the encoded values depend in
some way on the previous bytes in the text.
Since the conversion functions allow converting a text in more than one
step we must have a way to pass this information from one call of the
functions to another.
@comment wchar.h
@comment ISO
@deftp {Data type} mbstate_t
@cindex shift state
A variable of type @code{mbstate_t} can contain all the information
about the @dfn{shift state} needed from one call to a conversion
function to another.
@pindex wchar.h
This type is defined in @file{wchar.h}. It got introduced in the second
amendment to @w{ISO C89}.
@end deftp
To use objects of this type the programmer has to define such objects
(normally as local variables on the stack) and pass a pointer to the
object to the conversion functions. This way the conversion function
can update the object if the current multibyte character set is
stateful.
There is no specific function or initializer to put the state object in
any specific state. The rules are that the object should always
represent the initial state before the first use and this is achieved by
clearing the whole variable with code such as follows:
@smallexample
@{
mbstate_t state;
memset (&state, '\0', sizeof (state));
/* @r{from now on @var{state} can be used.} */
...
@}
@end smallexample
When using the conversion functions to generate output it is often
necessary to test whether the current state corresponds to the initial
state. This is necessary, for example, to decide whether or not to emit
escape sequences to set the state to the initial state at certain
sequence points. Communication protocols often require this.
@comment wchar.h
@comment ISO
@deftypefun int mbsinit (const mbstate_t *@var{ps})
This function determines whether the state object pointed to by @var{ps}
is in the initial state or not. If @var{ps} is a null pointer or the
object is in the initial state the return value is nonzero. Otherwise
it is zero.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C89} and
is declared in @file{wchar.h}.
@end deftypefun
Code using this function often looks similar to this:
@c Fix the example to explicitly say how to generate the escape sequence
@c to restore the initial state.
@smallexample
@{
mbstate_t state;
memset (&state, '\0', sizeof (state));
/* @r{Use @var{state}.} */
...
if (! mbsinit (&state))
@{
/* @r{Emit code to return to initial state.} */
const char empty[] = "";
const char **srcp = ∅
wcsrtombs (outbuf, &srcp, outbuflen, &state);
@}
...
@}
@end smallexample
The code to emit the escape sequence to get back to the initial state is
interesting. The @code{wcsrtombs} function can be used to determine the
necessary output code (@pxref{Converting Strings}). Please note that on
GNU systems it is not necessary to perform this extra action for the
conversion from multibyte text ot wide character text since the wide
character encoding is not stateful. But there is nothing mentioned in
any standard which prohibits making @code{wchar_t} using a stateful
encoding.
@node Converting a Character
@subsection Converting Single Characters
The most fundamental of the conversion functions are those dealing with
single characters. Please note that this does not always mean single
bytes. But since there is very often a subset of the multibyte
character set which consists of single byte sequences there are
functions to help with converting bytes. One very important and often
applicable scenario is where ASCII is a subpart of the multibyte
character set. I.e., all ASCII characters stand for itself and all
other characters have at least a first byte which is beyond the range
@math{0} to @math{127}.
@comment wchar.h
@comment ISO
@deftypefun wint_t btowc (int @var{c})
The @code{btowc} function (``byte to wide character'') converts a valid
single byte character @var{c} in the initial shift state into the wide
character equivalent using the conversion rules from the currently
selected locale of the @code{LC_CTYPE} category.
If @code{(unsigned char) @var{c}} is no valid single byte multibyte
character or if @var{c} is @code{EOF} the function returns @code{WEOF}.
Please note the restriction of @var{c} being tested for validity only in
the initial shift state. There is no @code{mbstate_t} object used from
which the state information is taken and the function also does not use
any static state.
@pindex wchar.h
This function was introduced in the second amendment of @w{ISO C89} and
is declared in @file{wchar.h}.
@end deftypefun
Despite the limitation that the single byte value always is interpreted
in the initial state this function is actually useful most of the time.
Most characters are either entirely single-byte character sets or they
are extension to ASCII. But then it is possible to write code like this
(not that this specific example is very useful):
@smallexample
wchar_t *
itow (unsigned long int val)
@{
static wchar_t buf[30];
wchar_t *wcp = &buf[29];
*wcp = L'\0';
while (val != 0)
@{
*--wcp = btowc ('0' + val % 10);
val /= 10;
@}
if (wcp == &buf[29])
*--wcp = L'0';
return wcp;
@}
@end smallexample
Why is it necessary to use such a complicated implementation and not
simply cast @code{'0' + val % 10} to a wide character? The answer is
that there is no guarantee that one can perform this kind of arithmetic
on the character of the character set used for @code{wchar_t}
representation. In other situations the bytes are not constant at
compile time and so the compiler cannot do the work. In situations like
this it is necessary @code{btowc}.
@noindent
There also is a function for the conversion in the other direction.
@comment wchar.h
@comment ISO
@deftypefun int wctob (wint_t @var{c})
The @code{wctob} function (``wide character to byte'') takes as the
parameter a valid wide character. If the multibyte representation for
this character in the initial state is exactly one byte long the return
value of this function is this character. Otherwise the return value is
@code{EOF}.
@pindex wchar.h
This function was introduced in the second amendment of @w{ISO C89} and
is declared in @file{wchar.h}.
@end deftypefun
There are more general functions to convert single character from
multibyte representation to wide characters and vice versa. These
functions pose no limit on the length of the multibyte representation
and they also do not require it to be in the initial state.
@comment wchar.h
@comment ISO
@deftypefun size_t mbrtowc (wchar_t *restrict @var{pwc}, const char *restrict @var{s}, size_t @var{n}, mbstate_t *restrict @var{ps})
@cindex stateful
The @code{mbrtowc} function (``multibyte restartable to wide
character'') converts the next multibyte character in the string pointed
to by @var{s} into a wide character and stores it in the wide character
string pointed to by @var{pwc}. The conversion is performed according
to the locale currently selected for the @code{LC_CTYPE} category. If
the conversion for the character set used in the locale requires a state
the multibyte string is interpreted in the state represented by the
object pointed to by @var{ps}. If @var{ps} is a null pointer an static,
internal state variable used only by the @code{mbrtowc} variable is
used.
If the next multibyte character corresponds to the NUL wide character
the return value of the function is @math{0} and the state object is
afterwards in the initial state. If the next @var{n} or fewer bytes
form a correct multibyte character the return value is the number of
bytes starting from @var{s} which form the multibyte character. The
conversion state is updated according to the bytes consumed in the
conversion. In both cases the wide character (either the @code{L'\0'}
or the one found in the conversion) is stored in the string pointer to
by @var{pwc} iff @var{pwc} is not null.
If the first @var{n} bytes of the multibyte string possibly form a valid
multibyte character but there are more than @var{n} bytes needed to
complete it the return value of the function is @code{(size_t) -2} and
no value is stored. Please note that this can happen even if @var{n}
has a value greater or equal to @code{MB_CUR_MAX} since the input might
contain redundant shift sequences.
If the first @code{n} bytes of the multibyte string cannot possibly form
a valid multibyte character also no value is stored, the global variable
@code{errno} is set to the value @code{EILSEQ} and the function returns
@code{(size_t) -1}. The conversion state is afterwards undefined.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C89} and
is declared in @file{wchar.h}.
@end deftypefun
Using this function is straight forward. A function which copies a
multibyte string into a wide character string while at the same time
converting all lowercase character into uppercase could look like this
(this is not the final version, just an example; it has no error
checking, and leaks sometimes memory):
@smallexample
wchar_t *
mbstouwcs (const char *s)
@{
size_t len = strlen (s);
wchar_t *result = malloc ((len + 1) * sizeof (wchar_t));
wchar_t *wcp = result;
wchar_t tmp[1];
mbstate_t state;
memset (&state, '\0', sizeof (state));
size_t nbytes;
while ((nbytes = mbrtowc (tmp, s, len, &state)) > 0)
@{
if (nbytes >= (size_t) -2)
/* Invalid input string. */
return NULL;
*result++ = towupper (tmp[0]);
len -= nbytes;
s += nbytes;
@}
return result;
@}
@end smallexample
The use of @code{mbrtowc} should be clear. A single wide character is
stored in @code{@var{tmp}[0]} and the number of consumed bytes is stored
in the variable @var{nbytes}. In case the the conversion was successful
the uppercase variant of the wide character is stored in the
@var{result} array and the pointer to the input string and the number of
available bytes is adjusted.
The only non-obvious thing about the function might be the way memory is
allocated for the result. The above code uses the fact that there can
never be more wide characters in the converted results than there are
bytes in the multibyte input string. This method yields to a
pessimistic guess about the size of the result and if many wide
character strings have to be constructed this way or the strings are
long, the extra memory required allocated because the input string
contains multibzte characters might be significant. It would be
possible to resize the allocated memory block to the correct size before
returning it. A better solution might be to allocate just the right
amount of space for the result right away. Unfortunately there is no
function to compute the length of the wide character string directly
from the multibyte string. But there is a function which does part of
the work.
@comment wchar.h
@comment ISO
@deftypefun size_t mbrlen (const char *restrict @var{s}, size_t @var{n}, mbstate_t *@var{ps})
The @code{mbrlen} function (``multibyte restartable length'') computes
the number of at most @var{n} bytes starting at @var{s} which form the
next valid and complete multibyte character.
If the next multibyte character corresponds to the NUL wide character
the return value is @math{0}. If the next @var{n} bytes form a valid
multibyte character the number of bytes belonging to this multibyte
character byte sequence is returned.
If the the first @var{n} bytes possibly form a valid multibyte
character but it is incomplete the return value is @code{(size_t) -2}.
Otherwise the multibyte character sequence is invalid and the return
value is @code{(size_t) -1}.
The multibyte sequence is interpreted in the state represented by the
object pointer to by @var{ps}. If @var{ps} is a null pointer an state
object local to @code{mbrlen} is used.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C89} and
is declared in @file{wchar.h}.
@end deftypefun
The tentative reader now will of course note that @code{mbrlen} can be
implemented as
@smallexample
mbrtowc (NULL, s, n, ps != NULL ? ps : &internal)
@end smallexample
This is true and in fact is mentioned in the official specification.
Now, how can this function be used to determine the length of the wide
character string created from a multibyte character string? It is not
directly usable but we can define a function @code{mbslen} using it:
@smallexample
size_t
mbslen (const char *s)
@{
mbstate_t state;
size_t result = 0;
size_t nbytes;
memset (&state, '\0', sizeof (state));
while ((nbytes = mbrlen (s, MB_LEN_MAX, &state)) > 0)
@{
if (nbytes >= (size_t) -2)
/* @r{Something is wrong.} */
return (size_t) -1;
s += nbytes;
++result;
@}
return result;
@}
@end smallexample
This function simply calls @code{mbrlen} for each multibyte character
in the string and counts the number of function calls. Please note that
we here use @code{MB_LEN_MAX} as the size argument in the @code{mbrlen}
call. This is OK since a) this value is larger then the length of the
longest multibyte character sequence and b) because we know that the
string @var{s} ends with a NUL byte which cannot be part of any other
multibyte character sequence but the one representing the NUL wide
character. Therefore the @code{mbrlen} function will never read invalid
memory.
Now that this function is available (just to make this clear, this
function is @emph{not} part of the GNU C library) we can compute the
number of wide character required to store the converted multibyte
character string @var{s} using
@smallexample
wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t);
@end smallexample
Please note that the @code{mbslen} function is quite inefficient. The
implementation of @code{mbstouwcs} implemented using @code{mbslen} would
have to perform the conversion of the multibyte character input string
twice and this conversion might be quite expensive. So it is necessary
to think about the consequences of using the easier but imprecise method
before doing the work twice.
@comment wchar.h
@comment ISO
@deftypefun size_t wcrtomb (char *restrict @var{s}, wchar_t @var{wc}, mbstate_t *restrict @var{ps})
The @code{wcrtomb} function (``wide character restartable to
multibyte'') converts a single wide character into a multibyte string
corresponding to that wide character.
If @var{s} is a null pointer the function resets the the state stored in
the objects pointer to by @var{ps} (or the internal @code{mbstate_t}
object) to the initial state. This can also be achieved by a call like
this:
@smallexample
wcrtombs (temp_buf, L'\0', ps)
@end smallexample
@noindent
since if @var{s} is a null pointer @code{wcrtomb} performs as if it
writes into an internal buffer which is guaranteed to be large enough.
If @var{wc} is the NUL wide character @code{wcrtomb} emits, if
necessary, a shift sequence to get the state @var{ps} into the initial
state followed by a single NUL byte is stored in the string @var{s}.
Otherwise a byte sequence (possibly including shift sequences) is
written into the string @var{s}. This of only happens if @var{wc} is a
valid wide character, i.e., it has a multibyte representation in the
character set selected by locale of the @code{LC_CTYPE} category. If
@var{wc} is no valid wide character nothing is stored in the strings
@var{s}, @code{errno} is set to @code{EILSEQ}, the conversion state in
@var{ps} is undefined and the return value is @code{(size_t) -1}.
If no error occurred the function returns the number of bytes stored in
the string @var{s}. This includes all byte representing shift
sequences.
One word about the interface of the function: there is no parameter
specifying the length of the array @var{s}. Instead the function
assumes that there are at least @code{MB_CUR_MAX} bytes available since
this is the maximum length of any byte sequence representing a single
character. So the caller has to make sure that there is enough space
available, otherwise buffer overruns can occur.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C} and is
declared in @file{wchar.h}.
@end deftypefun
Using this function is as easy as using @code{mbrtowc}. The following
example appends a wide character string to a multibyte character string.
Again, the code is not really useful (and correct), it is simply here to
demonstrate the use and some problems.
@smallexample
char *
mbscatwc (char *s, size_t len, const wchar_t *ws)
@{
mbstate_t state;
/* @r{Find the end of the existing string.} */
char *wp = strchr (s, '\0');
len -= wp - s;
memset (&state, '\0', sizeof (state));
do
@{
size_t nbytes;
if (len < MB_CUR_LEN)
@{
/* @r{We cannot guarantee that the next}
@r{character fits into the buffer, so}
@r{return an error.} */
errno = E2BIG;
return NULL;
@}
nbytes = wcrtomb (wp, *ws, &state);
if (nbytes == (size_t) -1)
/* @r{Error in the conversion.} */
return NULL;
len -= nbytes;
wp += nbytes;
@}
while (*ws++ != L'\0');
return s;
@}
@end smallexample
First the function has to find the end of the string currently in the
array @var{s}. The @code{strchr} call does this very efficiently since a
requirement for multibyte character representations is that the NUL byte
never is used except to represent itself (and in this context, the end
of the string).
After initializing the state object the loop is entered where the first
task is to make sure there is enough room in the array @var{s}. We
abort if there are not at least @code{MB_CUR_LEN} bytes available. This
is not always optimal but we have no other choice. We might have less
than @code{MB_CUR_LEN} bytes available but the next multibyte character
might also be only one byte long. At the time the @code{wcrtomb} call
returns it is too late to decide whether the buffer was large enough or
not. If this solution is really unsuitable there is a very slow but
more accurate solution.
@smallexample
...
if (len < MB_CUR_LEN)
@{
mbstate_t temp_state;
memcpy (&temp_state, &state, sizeof (state));
if (wcrtomb (NULL, *ws, &temp_state) > len)
@{
/* @r{We cannot guarantee that the next}
@r{character fits into the buffer, so}
@r{return an error.} */
errno = E2BIG;
return NULL;
@}
@}
...
@end smallexample
Here we do perform the conversion which might overflow the buffer so
that we are afterwards in the position to make an exact decision about
the buffer size. Please note the @code{NULL} argument for the
destination buffer in the new @code{wcrtomb} call; since we are not
interested in the converted text at this point this is a nice way to
express this. The most unusual thing about this piece of code certainly
is the duplication of the conversion state object. But think about
this: if a change of the state is necessary to emit the next multibyte
character we want to have the same shift state change performed in the
real conversion. Therefore we have to preserve the initial shift state
information.
There are certainly many more and even better solutions to this problem.
This example is only meant for educational purposes.
@node Converting Strings
@subsection Converting Multibyte and Wide Character Strings
The functions described in the previous section only convert a single
character at a time. Most operations to be performed in real-world
programs include strings and therefore the @w{ISO C} standard also
defines conversions on entire strings. However, the defined set of
functions is quite limited, thus the GNU C library contains a few
extensions which can help in some important situations.
@comment wchar.h
@comment ISO
@deftypefun size_t mbsrtowcs (wchar_t *restrict @var{dst}, const char **restrict @var{src}, size_t @var{len}, mbstate_t *restrict @var{ps})
The @code{mbsrtowcs} function (``multibyte string restartable to wide
character string'') converts an NUL terminated multibyte character
string at @code{*@var{src}} into an equivalent wide character string,
including the NUL wide character at the end. The conversion is started
using the state information from the object pointed to by @var{ps} or
from an internal object of @code{mbsrtowcs} if @var{ps} is a null
pointer. Before returning the state object to match the state after the
last converted character. The state is the initial state if the
terminating NUL byte is reached and converted.
If @var{dst} is not a null pointer the result is stored in the array
pointed to by @var{dst}, otherwise the conversion result is not
available since it is stored in an internal buffer.
If @var{len} wide characters are stored in the array @var{dst} before
reaching the end of the input string the conversion stops and @var{len}
is returned. If @var{dst} is a null pointer @var{len} is never checked.
Another reason for a premature return from the function call is if the
input string contains an invalid multibyte sequence. In this case the
global variable @code{errno} is set to @code{EILSEQ} and the function
returns @code{(size_t) -1}.
@c XXX The ISO C9x draft seems to have a problem here. It says that PS
@c is not updated if DST is NULL. This is not said straight forward and
@c none of the other functions is described like this. It would make sense
@c to define the function this way but I don't think it is meant like this.
In all other cases the function returns the number of wide characters
converted during this call. If @var{dst} is not null @code{mbsrtowcs}
stores in the pointer pointed to by @var{src} a null pointer (if the NUL
byte in the input string was reached) or the address of the byte
following the last converted multibyte character.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C} and is
declared in @file{wchar.h}.
@end deftypefun
The definition of this function has one limitation which has to be
understood. The requirement that @var{dst} has to be a NUL terminated
string provides problems if one wants to convert buffers with text. A
buffer is normally no collection of NUL terminated strings but instead a
continuous collection of lines, separated by newline characters. Now
assume a function to convert one line from a buffer is needed. Since
the line is not NUL terminated the source pointer cannot directly point
into the unmodified text buffer. This means, either one inserts the NUL
byte at the appropriate place for the time of the @code{mbsrtowcs}
function call (which is not doable for a read-only buffer or in a
multi-threaded application) or one copies the line in an extra buffer
where it can be terminated by a NUL byte. Note that it is not in
general possible to limit the number of characters to convert by setting
the parameter @var{len} to any specific value. Since it is not known
how many bytes each multibyte character sequence is in length one always
could do only a guess.
@cindex stateful
There is still a problem with the method of NUL-terminating a line right
after the newline character which could lead to very strange results.
As said in the description of the @var{mbsrtowcs} function above the
conversion state is guaranteed to be in the initial shift state after
processing the NUL byte at the end of the input string. But this NUL
byte is not really part of the text. I.e., the conversion state after
the newline in the original text could be something different than the
initial shift state and therefore the first character of the next line
is encoded using this state. But the state in question is never
accessible to the user since the conversion stops after the NUL byte
(which resets the state). Most stateful character sets in use today
require that the shift state after a newline is the initial state--but
this is not a strict guarantee. Therefore simply NUL terminating a
piece of a running text is not always an adequate solution and therefore
never should be used in generally used code.
The generic conversion interface (see @xref{Generic Charset Conversion})
does not have this limitation (it simply works on buffers, not
strings), and the GNU C library contains a set of functions which take
additional parameters specifying the maximal number of bytes which are
consumed from the input string. This way the problem of
@code{mbsrtowcs}'s example above could be solved by determining the line
length and passing this length to the function.
@comment wchar.h
@comment ISO
@deftypefun size_t wcsrtombs (char *restrict @var{dst}, const wchar_t **restrict @var{src}, size_t @var{len}, mbstate_t *restrict @var{ps})
The @code{wcsrtombs} function (``wide character string restartable to
multibyte string'') converts the NUL terminated wide character string at
@code{*@var{src}} into an equivalent multibyte character string and
stores the result in the array pointed to by @var{dst}. The NUL wide
character is also converted. The conversion starts in the state
described in the object pointed to by @var{ps} or by a state object
locally to @code{wcsrtombs} in case @var{ps} is a null pointer. If
@var{dst} is a null pointer the conversion is performed as usual but the
result is not available. If all characters of the input string were
successfully converted and if @var{dst} is not a null pointer the
pointer pointed to by @var{src} gets assigned a null pointer.
If one of the wide characters in the input string has no valid multibyte
character equivalent the conversion stops early, sets the global
variable @code{errno} to @code{EILSEQ}, and returns @code{(size_t) -1}.
Another reason for a premature stop is if @var{dst} is not a null
pointer and the next converted character would require more than
@var{len} bytes in total to the array @var{dst}. In this case (and if
@var{dest} is not a null pointer) the pointer pointed to by @var{src} is
assigned a value pointing to the wide character right after the last one
successfully converted.
Except in the case of an encoding error the return value of the function
is the number of bytes in all the multibyte character sequences stored
in @var{dst}. Before returning the state in the object pointed to by
@var{ps} (or the internal object in case @var{ps} is a null pointer) is
updated to reflect the state after the last conversion. The state is
the initial shift state in case the terminating NUL wide character was
converted.
@pindex wchar.h
This function was introduced in the second amendment to @w{ISO C} and is
declared in @file{wchar.h}.
@end deftypefun
The restriction mentions above for the @code{mbsrtowcs} function applies
also here. There is no possibility to directly control the number of
input characters. One has to place the NUL wide character at the
correct place or control the consumed input indirectly via the available
output array size (the @var{len} parameter).
@comment wchar.h
@comment GNU
@deftypefun size_t mbsnrtowcs (wchar_t *restrict @var{dst}, const char **restrict @var{src}, size_t @var{nmc}, size_t @var{len}, mbstate_t *restrict @var{ps})
The @code{mbsnrtowcs} function is very similar to the @code{mbsrtowcs}
function. All the parameters are the same except for @var{nmc} which is
new. The return value is the same as for @code{mbsrtowcs}.
This new parameter specifies how many bytes at most can be used from the
multibyte character string. I.e., the multibyte character string
@code{*@var{src}} need not be NUL terminated. But if a NUL byte is
found within the @var{nmc} first bytes of the string the conversion
stops here.
This function is a GNU extensions. It is meant to work around the
problems mentioned above. Now it is possible to convert buffer with
multibyte character text piece for piece without having to care about
inserting NUL bytes and the effect of NUL bytes on the conversion state.
@end deftypefun
A function to convert a multibyte string into a wide character string
and display it could be written like this (this is not a really useful
example):
@smallexample
void
showmbs (const char *src, FILE *fp)
@{
mbstate_t state;
int cnt = 0;
memset (&state, '\0', sizeof (state));
while (1)
@{
wchar_t linebuf[100];
const char *endp = strchr (src, '\n');
size_t n;
/* @r{Exit if there is no more line.} */
if (endp == NULL)
break;
n = mbsnrtowcs (linebuf, &src, endp - src, 99, &state);
linebuf[n] = L'\0';
fprintf (fp, "line %d: \"%S\"\n", linebuf);
@}
@}
@end smallexample
There is no problem with the state after a call to @code{mbsnrtowcs}.
Since we don't insert characters in the strings which were not in there
right from the beginning and we use @var{state} only for the conversion
of the given buffer there is no problem with altering the state.
@comment wchar.h
@comment GNU
@deftypefun size_t wcsnrtombs (char *restrict @var{dst}, const wchar_t **restrict @var{src}, size_t @var{nwc}, size_t @var{len}, mbstate_t *restrict @var{ps})
The @code{wcsnrtombs} function implements the conversion from wide
character strings to multibyte character strings. It is similar to
@code{wcsrtombs} but it takes, just like @code{mbsnrtowcs}, an extra
parameter which specifies the length of the input string.
No more than @var{nwc} wide characters from the input string
@code{*@var{src}} are converted. If the input string contains a NUL
wide character in the first @var{nwc} character to conversion stops at
this place.
This function is a GNU extension and just like @code{mbsnrtowcs} is
helps in situations where no NUL terminated input strings are available.
@end deftypefun
@node Multibyte Conversion Example
@subsection A Complete Multibyte Conversion Example
The example programs given in the last sections are only brief and do
not contain all the error checking etc. Presented here is a complete
and documented example. It features the @code{mbrtowc} function but it
should be easy to derive versions using the other functions.
@smallexample
int
file_mbsrtowcs (int input, int output)
@{
/* @r{Note the use of @code{MB_LEN_MAX}.}
@r{@code{MB_CUR_MAX} cannot portably be used here.} */
char buffer[BUFSIZ + MB_LEN_MAX];
mbstate_t state;
int filled = 0;
int eof = 0;
/* @r{Initialize the state.} */
memset (&state, '\0', sizeof (state));
while (!eof)
@{
ssize_t nread;
ssize_t nwrite;
char *inp = buffer;
wchar_t outbuf[BUFSIZ];
wchar_t *outp = outbuf;
/* @r{Fill up the buffer from the input file.} */
nread = read (input, buffer + filled, BUFSIZ);
if (nread < 0)
@{
perror ("read");
return 0;
@}
/* @r{If we reach end of file, make a note to read no more.} */
if (nread == 0)
eof = 1;
/* @r{@code{filled} is now the number of bytes in @code{buffer}.} */
filled += nread;
/* @r{Convert those bytes to wide characters--as many as we can.} */
while (1)
@{
size_t thislen = mbrtowc (outp, inp, filled, &state);
/* @r{Stop converting at invalid character;}
@r{this can mean we have read just the first part}
@r{of a valid character.} */
if (thislen == (size_t) -1)
break;
/* @r{We want to handle embedded NUL bytes}
@r{but the return value is 0. Correct this.} */
if (thislen == 0)
thislen = 1;
/* @r{Advance past this character.} */
inp += thislen;
filled -= thislen;
++outp;
@}
/* @r{Write the wide characters we just made.} */
nwrite = write (output, outbuf,
(outp - outbuf) * sizeof (wchar_t));
if (nwrite < 0)
@{
perror ("write");
return 0;
@}
/* @r{See if we have a @emph{real} invalid character.} */
if ((eof && filled > 0) || filled >= MB_CUR_MAX)
@{
error (0, 0, "invalid multibyte character");
return 0;
@}
/* @r{If any characters must be carried forward,}
@r{put them at the beginning of @code{buffer}.} */
if (filled > 0)
memmove (inp, buffer, filled);
@}
return 1;
@}
@end smallexample
@node Non-reentrant Conversion
@section Non-reentrant Conversion Function
The functions described in the last chapter are defined in the second
amendment to @w{ISO C89}. But the original @w{ISO C89} standard also
contained functions for character set conversion. The reason that they
are not described in the first place is that they are almost entirely
useless.
The problem is that all the functions for conversion defined in @w{ISO
C89} use a local state. This implies that multiple conversions at the
same time (not only when using threads) cannot be done, and that you
cannot first convert single characters and then strings since you cannot
tell the conversion functions which state to use.
These functions are therefore usable only in a very limited set of
situations. One must complete converting the entire string before
starting a new one and each string/text must be converted with the same
function (there is no problem with the library itself; it is guaranteed
that no library function changes the state of any of these functions).
@strong{For the above reasons it is highly requested that the functions
from the last section are used in place of non-reentrant conversion
functions.}
@menu
* Non-reentrant Character Conversion:: Non-reentrant Conversion of Single
Characters.
* Non-reentrant String Conversion:: Non-reentrant Conversion of Strings.
* Shift State:: States in Non-reentrant Functions.
@end menu
@node Non-reentrant Character Conversion
@subsection Non-reentrant Conversion of Single Characters
@comment stdlib.h
@comment ISO
@deftypefun int mbtowc (wchar_t *restrict @var{result}, const char *restrict @var{string}, size_t @var{size})
The @code{mbtowc} (``multibyte to wide character'') function when called
with non-null @var{string} converts the first multibyte character
beginning at @var{string} to its corresponding wide character code. It
stores the result in @code{*@var{result}}.
@code{mbtowc} never examines more than @var{size} bytes. (The idea is
to supply for @var{size} the number of bytes of data you have in hand.)
@code{mbtowc} with non-null @var{string} distinguishes three
possibilities: the first @var{size} bytes at @var{string} start with
valid multibyte character, they start with an invalid byte sequence or
just part of a character, or @var{string} points to an empty string (a
null character).
For a valid multibyte character, @code{mbtowc} converts it to a wide
character and stores that in @code{*@var{result}}, and returns the
number of bytes in that character (always at least @math{1}, and never
more than @var{size}).
For an invalid byte sequence, @code{mbtowc} returns @math{-1}. For an
empty string, it returns @math{0}, also storing @code{'\0'} in
@code{*@var{result}}.
If the multibyte character code uses shift characters, then
@code{mbtowc} maintains and updates a shift state as it scans. If you
call @code{mbtowc} with a null pointer for @var{string}, that
initializes the shift state to its standard initial value. It also
returns nonzero if the multibyte character code in use actually has a
shift state. @xref{Shift State}.
@end deftypefun
@comment stdlib.h
@comment ISO
@deftypefun int wctomb (char *@var{string}, wchar_t @var{wchar})
The @code{wctomb} (``wide character to multibyte'') function converts
the wide character code @var{wchar} to its corresponding multibyte
character sequence, and stores the result in bytes starting at
@var{string}. At most @code{MB_CUR_MAX} characters are stored.
@code{wctomb} with non-null @var{string} distinguishes three
possibilities for @var{wchar}: a valid wide character code (one that can
be translated to a multibyte character), an invalid code, and @code{L'\0'}.
Given a valid code, @code{wctomb} converts it to a multibyte character,
storing the bytes starting at @var{string}. Then it returns the number
of bytes in that character (always at least @math{1}, and never more
than @code{MB_CUR_MAX}).
If @var{wchar} is an invalid wide character code, @code{wctomb} returns
@math{-1}. If @var{wchar} is @code{L'\0'}, it returns @code{0}, also
storing @code{'\0'} in @code{*@var{string}}.
If the multibyte character code uses shift characters, then
@code{wctomb} maintains and updates a shift state as it scans. If you
call @code{wctomb} with a null pointer for @var{string}, that
initializes the shift state to its standard initial value. It also
returns nonzero if the multibyte character code in use actually has a
shift state. @xref{Shift State}.
Calling this function with a @var{wchar} argument of zero when
@var{string} is not null has the side-effect of reinitializing the
stored shift state @emph{as well as} storing the multibyte character
@code{'\0'} and returning @math{0}.
@end deftypefun
Similar to @code{mbrlen} there is also a non-reentrant function which
computes the length of a multibyte character. It can be defined in
terms of @code{mbtowc}.
@comment stdlib.h
@comment ISO
@deftypefun int mblen (const char *@var{string}, size_t @var{size})
The @code{mblen} function with a non-null @var{string} argument returns
the number of bytes that make up the multibyte character beginning at
@var{string}, never examining more than @var{size} bytes. (The idea is
to supply for @var{size} the number of bytes of data you have in hand.)
The return value of @code{mblen} distinguishes three possibilities: the
first @var{size} bytes at @var{string} start with valid multibyte
character, they start with an invalid byte sequence or just part of a
character, or @var{string} points to an empty string (a null character).
For a valid multibyte character, @code{mblen} returns the number of
bytes in that character (always at least @code{1}, and never more than
@var{size}). For an invalid byte sequence, @code{mblen} returns
@math{-1}. For an empty string, it returns @math{0}.
If the multibyte character code uses shift characters, then @code{mblen}
maintains and updates a shift state as it scans. If you call
@code{mblen} with a null pointer for @var{string}, that initializes the
shift state to its standard initial value. It also returns a nonzero
value if the multibyte character code in use actually has a shift state.
@xref{Shift State}.
@pindex stdlib.h
The function @code{mblen} is declared in @file{stdlib.h}.
@end deftypefun
@node Non-reentrant String Conversion
@subsection Non-reentrant Conversion of Strings
For convenience reasons the @w{ISO C89} standard defines also functions
to convert entire strings instead of single characters. These functions
suffer from the same problems as their reentrant counterparts from the
second amendment to @w{ISO C89}; see @xref{Converting Strings}.
@comment stdlib.h
@comment ISO
@deftypefun size_t mbstowcs (wchar_t *@var{wstring}, const char *@var{string}, size_t @var{size})
The @code{mbstowcs} (``multibyte string to wide character string'')
function converts the null-terminated string of multibyte characters
@var{string} to an array of wide character codes, storing not more than
@var{size} wide characters into the array beginning at @var{wstring}.
The terminating null character counts towards the size, so if @var{size}
is less than the actual number of wide characters resulting from
@var{string}, no terminating null character is stored.
The conversion of characters from @var{string} begins in the initial
shift state.
If an invalid multibyte character sequence is found, this function
returns a value of @math{-1}. Otherwise, it returns the number of wide
characters stored in the array @var{wstring}. This number does not
include the terminating null character, which is present if the number
is less than @var{size}.
Here is an example showing how to convert a string of multibyte
characters, allocating enough space for the result.
@smallexample
wchar_t *
mbstowcs_alloc (const char *string)
@{
size_t size = strlen (string) + 1;
wchar_t *buf = xmalloc (size * sizeof (wchar_t));
size = mbstowcs (buf, string, size);
if (size == (size_t) -1)
return NULL;
buf = xrealloc (buf, (size + 1) * sizeof (wchar_t));
return buf;
@}
@end smallexample
@end deftypefun
@comment stdlib.h
@comment ISO
@deftypefun size_t wcstombs (char *@var{string}, const wchar_t *@var{wstring}, size_t @var{size})
The @code{wcstombs} (``wide character string to multibyte string'')
function converts the null-terminated wide character array @var{wstring}
into a string containing multibyte characters, storing not more than
@var{size} bytes starting at @var{string}, followed by a terminating
null character if there is room. The conversion of characters begins in
the initial shift state.
The terminating null character counts towards the size, so if @var{size}
is less than or equal to the number of bytes needed in @var{wstring}, no
terminating null character is stored.
If a code that does not correspond to a valid multibyte character is
found, this function returns a value of @math{-1}. Otherwise, the
return value is the number of bytes stored in the array @var{string}.
This number does not include the terminating null character, which is
present if the number is less than @var{size}.
@end deftypefun
@node Shift State
@subsection States in Non-reentrant Functions
In some multibyte character codes, the @emph{meaning} of any particular
byte sequence is not fixed; it depends on what other sequences have come
earlier in the same string. Typically there are just a few sequences
that can change the meaning of other sequences; these few are called
@dfn{shift sequences} and we say that they set the @dfn{shift state} for
other sequences that follow.
To illustrate shift state and shift sequences, suppose we decide that
the sequence @code{0200} (just one byte) enters Japanese mode, in which
pairs of bytes in the range from @code{0240} to @code{0377} are single
characters, while @code{0201} enters Latin-1 mode, in which single bytes
in the range from @code{0240} to @code{0377} are characters, and
interpreted according to the ISO Latin-1 character set. This is a
multibyte code which has two alternative shift states (``Japanese mode''
and ``Latin-1 mode''), and two shift sequences that specify particular
shift states.
When the multibyte character code in use has shift states, then
@code{mblen}, @code{mbtowc} and @code{wctomb} must maintain and update
the current shift state as they scan the string. To make this work
properly, you must follow these rules:
@itemize @bullet
@item
Before starting to scan a string, call the function with a null pointer
for the multibyte character address---for example, @code{mblen (NULL,
0)}. This initializes the shift state to its standard initial value.
@item
Scan the string one character at a time, in order. Do not ``back up''
and rescan characters already scanned, and do not intersperse the
processing of different strings.
@end itemize
Here is an example of using @code{mblen} following these rules:
@smallexample
void
scan_string (char *s)
@{
int length = strlen (s);
/* @r{Initialize shift state.} */
mblen (NULL, 0);
while (1)
@{
int thischar = mblen (s, length);
/* @r{Deal with end of string and invalid characters.} */
if (thischar == 0)
break;
if (thischar == -1)
@{
error ("invalid multibyte character");
break;
@}
/* @r{Advance past this character.} */
s += thischar;
length -= thischar;
@}
@}
@end smallexample
The functions @code{mblen}, @code{mbtowc} and @code{wctomb} are not
reentrant when using a multibyte code that uses a shift state. However,
no other library functions call these functions, so you don't have to
worry that the shift state will be changed mysteriously.
@node Generic Charset Conversion
@section Generic Charset Conversion
The conversion functions mentioned so far in this chapter all had in
common that they operate on character sets which are not directly
specified by the functions. The multibyte encoding used is specified by
the currently selected locale for the @code{LC_CTYPE} category. The
wide character set is fixed by the implementation (in the case of GNU C
library it always is UCS4 encoded @w{ISO 10646}.
This has of course several problems when it comes to general character
conversion:
@itemize @bullet
@item
For every conversion where neither the source or destination character
set is the character set of the locale for the @code{LC_CTYPE} category,
one has to change the @code{LC_CTYPE} locale using @code{setlocale}.
This introduces major problems for the rest of the programs since
several more functions (e.g., the character classification functions,
@xref{Classification of Characters}) use the @code{LC_CTYPE} category.
@item
Parallel conversions to and from different character sets are not
possible since the @code{LC_CTYPE} selection is global and shared by all
threads.
@item
If neither the source nor the destination character set is the character
set used for @code{wchar_t} representation there is at least a two-step
process necessary to convert a text using the functions above. One
would have to select the source character set as the multibyte encoding,
convert the text into a @code{wchar_t} text, select the destination
character set as the multibyte encoding and convert the wide character
text to the multibyte (@math{=} destination) character set.
Even if this is possible (which is not guaranteed) it is a very tiring
work. Plus it suffers from the other two raised points even more due to
the steady changing of the locale.
@end itemize
The XPG2 standard defines a completely new set of functions which has
none of these limitations. They are not at all coupled to the selected
locales and they but no constraints on the character sets selected for
source and destination. Only the set of available conversions is
limiting them. The standard does not specify that any conversion at all
must be available. It is a measure of the quality of the implementation.
In the following text first the interface to @code{iconv}, the
conversion function, will be described. Comparisons with other
implementations will show what pitfalls lie on the way of portable
applications. At last, the implementation is described as far as
interesting to the advanced user who wants to extend the conversion
capabilities.
@menu
* Generic Conversion Interface:: Generic Character Set Conversion Interface.
* iconv Examples:: A complete @code{iconv} example.
* Other iconv Implementations:: Some Details about other @code{iconv}
Implementations.
* glibc iconv Implementation:: The @code{iconv} Implementation in the GNU C
library.
@end menu
@node Generic Conversion Interface
@subsection Generic Character Set Conversion Interface
This set of functions follows the traditional cycle of using a resource:
open--use--close. The interface consists of three functions, each of
which implement one step.
Before the interfaces are described it is necessary to introduce a
datatype. Just like other open--use--close interface the functions
introduced here work using a handles and the @file{iconv.h} header
defines a special type for the handles used.
@comment iconv.h
@comment XPG2
@deftp {Data Type} iconv_t
This data type is an abstract type defined in @file{iconv.h}. The user
must not assume anything about the definition of this type, it must be
completely opaque.
Objects of this type can get assigned handles for the conversions using
the @code{iconv} functions. The objects themselves need not be freed but
the conversions for which the handles stand for have to.
@end deftp
@noindent
The first step is the function to create a handle.
@comment iconv.h
@comment XPG2
@deftypefun iconv_t iconv_open (const char *@var{tocode}, const char *@var{fromcode})
The @code{iconv_open} function has to be used before starting a
conversion. The two parameters this function takes determine the
source and destination character set for the conversion and if the
implementation has the possibility to perform such a conversion the
function returns a handle.
If the wanted conversion is not available the function returns
@code{(iconv_t) -1}. In this case the global variable @code{errno} can
have the following values:
@table @code
@item EMFILE
The process already has @code{OPEN_MAX} file descriptors open.
@item ENFILE
The system limit of open file is reached.
@item ENOMEM
Not enough memory to carry out the operation.
@item EINVAL
The conversion from @var{fromcode} to @var{tocode} is not supported.
@end table
It is not possible to use the same descriptor in different threads to
perform independent conversions. Within the data structures associated
with the descriptor there is information about the conversion state.
This must not be messed up by using it in different conversions.
An @code{iconv} descriptor is like a file descriptor as for every use a
new descriptor must be created. The descriptor does not stand for all
of the conversions from @var{fromset} to @var{toset}.
The GNU C library implementation of @code{iconv_open} has one
significant extension to other implementations. To ease the extension
of the set of available conversions the implementation allows to store
the necessary files with data and code in arbitrary many directories.
How this extensions have to be written will be explained below
(@pxref{glibc iconv Implementation}). Here it is only important to say
that all directories mentioned in the @code{GCONV_PATH} environment
variable are considered if they contain a file @file{gconv-modules}.
These directories need not necessarily be created by the system
administrator. In fact, this extension is introduced to help users
writing and using own, new conversions. Of course this does not work
for security reasons in SUID binaries; in this case only the system
directory is considered and this normally is
@file{@var{prefix}/lib/gconv}. The @code{GCONV_PATH} environment
variable is examined exactly once at the first call of the
@code{iconv_open} function. Later modifications of the variable have no
effect.
@pindex iconv.h
This function got introduced early in the X/Open Portability Guide,
@w{version 2}. It is supported by all commercial Unices as it is
required for the Unix branding. However, the quality and completeness
of the implementation varies widely. The function is declared in
@file{iconv.h}.
@end deftypefun
The @code{iconv} implementation can associate large data structure with
the handle returned by @code{iconv_open}. Therefore it is crucial to
free all the resources once all conversions are carried out and the
conversion is not needed anymore.
@comment iconv.h
@comment XPG2
@deftypefun int iconv_close (iconv_t @var{cd})
The @code{iconv_close} function frees all resources associated with the
handle @var{cd} which must have been returned by a successful call to
the @code{iconv_open} function.
If the function call was successful the return value is @math{0}.
Otherwise it is @math{-1} and @code{errno} is set appropriately.
Defined error are:
@table @code
@item EBADF
The conversion descriptor is invalid.
@end table
@pindex iconv.h
This function was introduced together with the rest of the @code{iconv}
functions in XPG2 and it is declared in @file{iconv.h}.
@end deftypefun
The standard defines only one actual conversion function. This has
therefore the most general interface: it allows conversion from one
buffer to another. Conversion from a file to a buffer, vice versa, or
even file to file can be implemented on top of it.
@comment iconv.h
@comment XPG2
@deftypefun size_t iconv (iconv_t @var{cd}, const char **@var{inbuf}, size_t *@var{inbytesleft}, char **@var{outbuf}, size_t *@var{outbytesleft})
@cindex stateful
The @code{iconv} function converts the text in the input buffer
according to the rules associated with the descriptor @var{cd} and
stores the result in the output buffer. It is possible to call the
function for the same text several times in a row since for stateful
character sets the necessary state information is kept in the data
structures associated with the descriptor.
The input buffer is specified by @code{*@var{inbuf}} and it contains
@code{*@var{inbytesleft}} bytes. The extra indirection is necessary for
communicating the used input back to the caller (see below). It is
important to note that the buffer pointer is of type @code{char} and the
length is measured in bytes even if the input text is encoded in wide
characters.
The output buffer is specified in a similar way. @code{*@var{outbuf}}
points to the beginning of the buffer with at least
@code{*@var{outbytesleft}} bytes room for the result. The buffer
pointer again is of type @code{char} and the length is measured in
bytes. If @var{outbuf} or @code{*@var{outbuf}} is a null pointer the
conversion is performed but no output is available.
If @var{inbuf} is a null pointer the @code{iconv} function performs the
necessary action to put the state of the conversion into the initial
state. This is obviously a no-op for non-stateful encodings, but if the
encoding has a state such a function call might put some byte sequences
in the output buffer which perform the necessary state changes. The
next call with @var{inbuf} not being a null pointer then simply goes on
from the initial state. It is important that the programmer never makes
any assumption on whether the conversion has to deal with states or not.
Even if the input and output character sets are not stateful the
implementation might still have to keep states. This is due to the
implementation chosen for the GNU C library as it is described below.
Therefore an @code{iconv} call to reset the state should always be
performed if some protocol requires this for the output text.
The conversion stops for three reasons. The first is that all
characters from the input buffer are converted. This actually can mean
two things: really all bytes from the input buffer are consumed or
there are some bytes at the end of the buffer which possibly can form a
complete character but the input is incomplete. The second reason for a
stop is when the output buffer is full. And the third reason is that
the input contains invalid characters.
In all these cases the buffer pointers after the last successful
conversion, for input and output buffer, are stored in @var{inbuf} and
@var{outbuf} and the available room in each buffer is stored in
@var{inbytesleft} and @var{outbytesleft}.
Since the character sets selected in the @code{iconv_open} call can be
almost arbitrary there can be situations where the input buffer contains
valid characters which have no identical representation in the output
character set. The behavior in this situation is undefined. The
@emph{current} behavior of the GNU C library in this situation is to
return with an error immediately. This certainly is not the most
desirable solution. Therefore future versions will provide better ones
but they are not yet finished.
If all input from the input buffer is successfully converted and stored
in the output buffer the function returns the number of conversions
performed. In all other cases the return value is @code{(size_t) -1}
and @code{errno} is set appropriately. In this case the value pointed
to by @var{inbytesleft} is nonzero.
@table @code
@item EILSEQ
The conversion stopped because of an invalid byte sequence in the input.
After the call @code{*@var{inbuf}} points at the first byte of the
invalid byte sequence.
@item E2BIG
The conversion stopped because it ran out of space in the output buffer.
@item EINVAL
The conversion stopped because of an incomplete byte sequence at the end
of the input buffer.
@item EBADF
The @var{cd} argument is invalid.
@end table
@pindex iconv.h
This function was introduced in the XPG2 standard and is declared in the
@file{iconv.h} header.
@end deftypefun
The definition of the @code{iconv} function is quite good overall. It
provides quite flexible functionality. The only problems lie in the
boundary cases which are incomplete byte sequences at the end of the
input buffer and invalid input. A third problem, which is not really
a design problem, is the way conversions are selected. The standard
does not say anything about the legitimate names, a minimal set of
available conversions. We will see how this negatively impacts other
implementations, as is demonstrated below.
@node iconv Examples
@subsection A complete @code{iconv} example
The example below features a solution for a common problem. Given that
one knows the internal encoding used by the system for @code{wchar_t}
strings one often is in the position to read text from a file and store
it in wide character buffers. One can do this using @code{mbsrtowcs}
but then we run into the problems discussed above.
@smallexample
int
file2wcs (int fd, const char *charset, wchar_t *outbuf, size_t avail)
@{
char inbuf[BUFSIZ];
size_t insize = 0;
char *wrptr = (char *) outbuf;
int result = 0;
iconv_t cd;
cd = iconv_open ("UCS4", charset);
if (cd == (iconv_t) -1)
@{
/* @r{Something went wrong.} */
if (errno == EINVAL)
error (0, 0, "conversion from `%s' to `UCS4' no available",
charset);
else
perror ("iconv_open");
/* @r{Terminate the output string.} */
*outbuf = L'\0';
return -1;
@}
while (avail > 0)
@{
size_t nread;
size_t nconv;
char *inptr = inbuf;
/* @r{Read more input.} */
nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);
if (nread == 0)
@{
/* @r{When we come here the file is completely read.}
@r{This still could mean there are some unused}
@r{characters in the @code{inbuf}. Put them back.} */
if (lseek (fd, -insize, SEEK_CUR) == -1)
result = -1;
break;
@}
insize += nread;
/* @r{Do the conversion.} */
nconv = iconv (cd, &inptr, &insize, &wrptr, &avail);
if (nconv == (size_t) -1)
@{
/* @r{Not everything went right. It might only be}
@r{an unfinished byte sequence at the end of the}
@r{buffer. Or it is a real problem.} */
if (errno == EINVAL)
/* @r{This is harmless. Simply move the unused}
@r{bytes to the beginning of the buffer so that}
@r{they can be used in the next round.} */
memmove (inbuf, inptr, insize);
else
@{
/* @r{It is a real problem. Maybe we ran out of}
@r{space in the output buffer or we have invalid}
@r{input. In any case back the file pointer to}
@r{the position of the last processed byte.} */
lseek (fd, -insize, SEEK_CUR);
result = -1;
break;
@}
@}
@}
/* @r{Terminate the output string.} */
*((wchar_t *) wrptr) = L'\0';
if (iconv_close (cd) != 0)
perror ("iconv_close");
return (wchar_t *) wrptr - outbuf;
@}
@end smallexample
@cindex stateful
This example shows the most important aspects of using the @code{iconv}
functions. It shows how successive calls to @code{iconv} can be used to
convert large amounts of text. The user does not have to care about
stateful encodings as the functions take care of everything.
An interesting point is the case where @code{iconv} return an error and
@code{errno} is set to @code{EINVAL}. This is not really an error in
the transformation. It can happen whenever the input character set
contains byte sequences of more than one byte for some character and
texts are not processed in one piece. In this case there is a chance
that a multibyte sequence is cut. The caller than can simply read the
remainder of the takes and feed the offending bytes together with new
character from the input to @code{iconv} and continue the work. The
internal state kept in the descriptor is @emph{not} unspecified after
such an event as it is the case with the conversion functions from the
@w{ISO C} standard.
The example also shows the problem of using wide character strings with
@code{iconv}. As explained in the description of the @code{iconv}
function above the function always takes a pointer to a @code{char}
array and the available space is measured in bytes. In the example the
output buffer is a wide character buffer. Therefore we use a local
variable @var{wrptr} of type @code{char *} which is used in the
@code{iconv} calls.
This looks rather innocent but can lead to problems on platforms which
have tight restriction on alignment. Therefore the caller of
@code{iconv} has to make sure that the pointers passed are suitable for
access of characters from the appropriate character set. Since in the
above case the input parameter to the function is a @code{wchar_t}
pointer this is the case (unless the user violates alignment when
computing the parameter). But in other situations, especially when
writing generic functions where one does not know what type of character
set one uses and therefore treats text as a sequence of bytes, it might
become tricky.
@node Other iconv Implementations
@subsection Some Details about other @code{iconv} Implementations
This is not really the place to discuss the @code{iconv} implementation
of other systems but it is necessary to know a bit about them to write
portable programs. The above mentioned problems with the specification
of the @code{iconv} functions can lead to portability issues.
The first thing to notice is that due to the large number of character
sets in use it is certainly not practical to encode the conversions
directly in the C library. Therefore the conversion information must
come from files outside the C library. This is usually done in one or
both of the following ways:
@itemize @bullet
@item
The C library contains a set of generic conversion functions which can
read the needed conversion tables and other information from data files.
These files get loaded when necessary.
This solution is problematic as it requires a great deal of effort to
apply to all character sets (potentially an infinite set). The
differences in the structure of the different character sets is so large
that many different variants of the table processing functions must be
developed. On top of this the generic nature of these functions make
them slower than specifically implemented functions.
@item
The C library only contains a framework which can dynamically load
object files and execute the therein contained conversion functions.
This solution provides much more flexibility. The C library itself
contains only very little code and therefore reduces the general memory
footprint. Also, with a documented interface between the C library and
the loadable modules it is possible for third parties to extend the set
of available conversion modules. A drawback of this solution is that
dynamic loading must be available.
@end itemize
Some implementations in commercial Unices implement a mixture of these
these possibilities, the majority only the second solution. Using
loadable modules moves the code out of the library itself and keeps the
door open for extensions and improvements. But this design is also
limiting on some platforms since not many platforms support dynamic
loading in statically linked programs. On platforms without his
capability it is therefore not possible to use this interface in
statically linked programs. The GNU C library has on ELF platforms no
problems with dynamic loading in in these situations and therefore this
point is mood. The danger is that one gets acquainted with this and
forgets about the restrictions on other systems.
A second thing to know about other @code{iconv} implementations is that
the number of available conversions is often very limited. Some
implementations provide in the standard release (not special
international or developer releases) at most 100 to 200 conversion
possibilities. This does not mean 200 different character sets are
supported. E.g., conversions from one character set to a set of, say,
10 others counts as 10 conversion. Together with the other direction
this makes already 20. One can imagine the thin coverage these platform
provide. Some Unix vendors even provide only a handful of conversions
which renders them useless for almost all uses.
This directly leads to a third and probably the most problematic point.
The way the @code{iconv} conversion functions are implemented on all
known Unix system and the availability of the conversion functions from
character set @math{@cal{A}} to @math{@cal{B}} and the conversion from
@math{@cal{B}} to @math{@cal{C}} does @emph{not} imply that the
conversion from @math{@cal{A}} to @math{@cal{C}} is available.
This might not seem unreasonable and problematic at first but it is a
quite big problem as one will notice shortly after hitting it. To show
the problem we assume to write a program which has to convert from
@math{@cal{A}} to @math{@cal{C}}. A call like
@smallexample
cd = iconv_open ("@math{@cal{C}}", "@math{@cal{A}}");
@end smallexample
@noindent
does fail according to the assumption above. But what does the program
do now? The conversion is really necessary and therefore simply giving
up is no possibility.
This is a nuisance. The @code{iconv} function should take care of this.
But how should the program proceed from here on? If it would try to
convert to character set @math{@cal{B}} first the two @code{iconv_open}
calls
@smallexample
cd1 = iconv_open ("@math{@cal{B}}", "@math{@cal{A}}");
@end smallexample
@noindent
and
@smallexample
cd2 = iconv_open ("@math{@cal{C}}", "@math{@cal{B}}");
@end smallexample
@noindent
will succeed but how to find @math{@cal{B}}?
Unfortunately, the answer is: there is no general solution. On some
systems guessing might help. On those systems most character sets can
convert to and from UTF8 encoded @w{ISO 10646} or Unicode text.
Beside this only some very system-specific methods can help. Since the
conversion functions come from loadable modules and these modules must
be stored somewhere in the filesystem, one @emph{could} try to find them
and determine from the available file which conversions are available
and whether there is an indirect route from @math{@cal{A}} to
@math{@cal{C}}.
This shows one of the design errors of @code{iconv} mentioned above. It
should at least be possible to determine the list of available
conversion programmatically so that if @code{iconv_open} says there is
no such conversion, one could make sure this also is true for indirect
routes.
@node glibc iconv Implementation
@subsection The @code{iconv} Implementation in the GNU C library
After reading about the problems of @code{iconv} implementations in the
last section it is certainly good to note that the implementation in
the GNU C library has none of the problems mentioned above. What
follows is a step-by-step analysis of the points raised above. The
evaluation is based on the current state of the development (as of
January 1999). The development of the @code{iconv} functions is not
complete, but basic funtionality has solidified.
The GNU C library's @code{iconv} implementation uses shared loadable
modules to implement the conversions. A very small number of
conversions are built into the library itself but these are only rather
trivial conversions.
All the benefits of loadable modules are available in the GNU C library
implementation. This is especially appealing since the interface is
well documented (see below) and it therefore is easy to write new
conversion modules. The drawback of using loadable objects is not a
problem in the GNU C library, at least on ELF systems. Since the
library is able to load shared objects even in statically linked
binaries this means that static linking needs not to be forbidden in
case one wants to use @code{iconv}.
The second mentioned problem is the number of supported conversions.
Currently, the GNU C library supports more than 150 character sets. The
way the implementation is designed the number of supported conversions
is greater than 22350 (@math{150} times @math{149}). If any conversion
from or to a character set is missing it can easily be added.
Particularly impressive as it may be, this high number is due to the
fact that the GNU C library implementation of @code{iconv} does not have
the third problem mentioned above. I.e., whenever there is a conversion
from a character set @math{@cal{A}} to @math{@cal{B}} and from
@math{@cal{B}} to @math{@cal{C}} it is always possible to convert from
@math{@cal{A}} to @math{@cal{C}} directly. If the @code{iconv_open}
returns an error and sets @code{errno} to @code{EINVAL} this really
means there is no known way, directly or indirectly, to perform the
wanted conversion.
@cindex triangulation
This is achieved by providing for each character set a conversion from
and to UCS4 encoded @w{ISO 10646}. Using @w{ISO 10646} as an
intermediate representation it is possible to @dfn{triangulate}, i.e.,
converting with an intermediate representation.
There is no inherent requirement to provide a conversion to @w{ISO
10646} for a new character set and it is also possible to provide other
conversions where neither source nor destination character set is @w{ISO
10646}. The currently existing set of conversions is simply meant to
cover all conversions which might be of interest.
@cindex ISO-2022-JP
@cindex EUC-JP
All currently available conversions use the triangulation method above,
making conversion run unnecessarily slow. If, e.g., somebody often
needs the conversion from ISO-2022-JP to EUC-JP, a quicker solution
would involve direct conversion between the two character sets, skipping
the input to @w{ISO 10646} first. The two character sets of interest
are much more similar to each other than to @w{ISO 10646}.
In such a situation one can easy write a new conversion and provide it
as a better alternative. The GNU C library @code{iconv} implementation
would automatically use the module implementing the conversion if it is
specified to be more efficient.
@subsubsection Format of @file{gconv-modules} files
All information about the available conversions comes from a file named
@file{gconv-modules} which can be found in any of the directories along
the @code{GCONV_PATH}. The @file{gconv-modules} files are line-oriented
text files, where each of the lines has one of the following formats:
@itemize @bullet
@item
If the first non-whitespace character is a @kbd{#} the line contains
only comments and is ignored.
@item
Lines starting with @code{alias} define an alias name for a character
set. There are two more words expected on the line. The first one
defines the alias name and the second defines the original name of the
character set. The effect is that it is possible to use the alias name
in the @var{fromset} or @var{toset} parameters of @code{iconv_open} and
achieve the same result as when using the real character set name.
This is quite important as a character set has often many different
names. There is normally always an official name but this need not
correspond to the most popular name. Beside this many character sets
have special names which are somehow constructed. E.g., all character
sets specified by the ISO have an alias of the form
@code{ISO-IR-@var{nnn}} where @var{nnn} is the registration number.
This allows programs which know about the registration number to
construct character set names and use them in @code{iconv_open} calls.
More on the available names and aliases follows below.
@item
Lines starting with @code{module} introduce an available conversion
module. These lines must contain three or four more words.
The first word specifies the source character set, the second word the
destination character set of conversion implemented in this module. The
third word is the name of the loadable module. The filename is
constructed by appending the usual shared object prefix (normally
@file{.so}) and this file is then supposed to be found in the same
directory the @file{gconv-modules} file is in. The last word on the
line, which is optional, is a numeric value representing the cost of the
conversion. If this word is missing a cost of @math{1} is assumed. The
numeric value itself does not matter that much; what counts are the
relative values of the sums of costs for all possible conversion paths.
Below is a more precise description of the use of the cost value.
@end itemize
Returning to the example above where one has written a module to directly
convert from ISO-2022-JP to EUC-JP and back. All what has to be done is
to put the new module, be its name ISO2022JP-EUCJP.so, in a directory
and add a file @file{gconv-modules} with the following content in the
same directory:
@smallexample
module ISO-2022-JP// EUC-JP// ISO2022JP-EUCJP 1
module EUC-JP// ISO-2022-JP// ISO2022JP-EUCJP 1
@end smallexample
To see why this is sufficient, it is necessary to understand how the
conversion used by @code{iconv} (and described in the descriptor) is
selected. The approach to this problem is quite simple.
At the first call of the @code{iconv_open} function the program reads
all available @file{gconv-modules} files and builds up two tables: one
containing all the known aliases and another which contains the
information about the conversions and which shared object implements
them.
@subsubsection Finding the conversion path in @code{iconv}
The set of available conversions form a directed graph with weighted
edges. The weights on the edges are the costs specified in the
@file{gconv-modules} files. The @code{iconv_open} function uses an
algorithm suitable for search for the best path in such a graph and so
constructs a list of conversions which must be performed in succession
to get the transformation from the source to the destination character
set.
Explaining why the above @file{gconv-modules} files allows the
@code{iconv} implementation to resolve the specific ISO-2022-JP to
EUC-JP conversion module instead of the conversion coming with the
library itself is straighforward. Since the later conversion takes two
steps (from ISO-2022-JP to @w{ISO 10646} and then from @w{ISO 10646} to
EUC-JP) the cost is @math{1+1 = 2}. But the above @file{gconv-modules}
file specifies that the new conversion modules can perform this
conversion with only the cost of @math{1}.
A mysterious piece about the @file{gconv-modules} file above (and also
the file coming with the GNU C library) are the names of the character
sets specified in the @code{module} lines. Why do almost all the names
end in @code{//}? And this is not all: the names can actually be
regular expressions. At this point of time this mystery should not be
revealed, unless you have the relevant spell-casting materials: ashes
from an original @w{DOS 6.2} boot disk burnt in effigy, a crucifix
blessed by St.@: Emacs, assorted herbal roots from Central America, sand
from Cebu, etc. Sorry! @strong{The part of the implementation where
this is used is not yet finished. For now please simply follow the
existing examples. It'll become clearer once it is. --drepper}
A last remark about the @file{gconv-modules} is about the names not
ending with @code{//}. There often is a character set named
@code{INTERNAL} mentioned. From the discussion above and the chosen
name it should have become clear that this is the names for the
representation used in the intermediate step of the triangulation. We
have said that this is UCS4 but actually it is not quite right. The
UCS4 specification also includes the specification of the byte ordering
used. Since an UCS4 value consists of four bytes a stored value is
effected by byte ordering. The internal representation is @emph{not}
the same as UCS4 in case the byte ordering of the processor (or at least
the running process) is not the same as the one required for UCS4. This
is done for performance reasons as one does not want to perform
unnecessary byte-swapping operations if one is not interested in actually
seeing the result in UCS4. To avoid trouble with endianess the internal
representation consistently is named @code{INTERNAL} even on big-endian
systems where the representations are identical.
@subsubsection @code{iconv} module data structures
So far this section described how modules are located and considered to
be used. What remains to be described is the interface of the modules
so that one can write new ones. This section describes the interface as
it is in use in January 1999. The interface will change in future a bit
but hopefully only in an upward compatible way.
The definitions necessary to write new modules are publically available
in the non-standard header @file{gconv.h}. The following text will
therefore describe the definitions from this header file. But first it
is necessary to get an overview.
From the perspective of the user of @code{iconv} the interface is quite
simple: the @code{iconv_open} function returns a handle which can be
used in calls @code{iconv} and finally the handle is freed with a call
to @code{iconv_close}. The problem is: the handle has to be able to
represent the possibly long sequences of conversion steps and also the
state of each conversion since the handle is all which is passed to the
@code{iconv} function. Therefore the data structures are really the
elements to understanding the implementation.
We need two different kinds of data structures. The first describes the
conversion and the second describes the state etc. There are really two
type definitions like this in @file{gconv.h}.
@pindex gconv.h
@comment gconv.h
@comment GNU
@deftp {Data type} {struct gconv_step}
This data structure describes one conversion a module can perform. For
each function in a loaded module with conversion functions there is
exactly one object of this type. This object is shared by all users of
the conversion. I.e., this object does not contain any information
corresponding to an actual conversion. It only describes the conversion
itself.
@table @code
@item struct gconv_loaded_object *shlib_handle
@itemx const char *modname
@itemx int counter
All these elements of the structure are used internally in the C library
to coordinate loading and unloading the shared. One must not expect any
of the other elements be available or initialized.
@item const char *from_name
@itemx const char *to_name
@code{from_name} and @code{to_name} contain the names of the source and
destination character sets. They can be used to identify the actual
conversion to be carried out since one module might implement
conversions for more than one character set and/or direction.
@item gconv_fct fct
@itemx gconv_init_fct init_fct
@itemx gconv_end_fct end_fct
These elements contain pointers to the functions in the loadable module.
The interface will be explained below.
@item int min_needed_from
@itemx int max_needed_from
@itemx int min_needed_to
@itemx int max_needed_to;
These values have to be filled in the the init function of the module.
The @code{min_needed_from} value specifies how many bytes a character of
the source character set at least needs. The @code{max_needed_from}
specifies the maximum value which also includes possible shift
sequences.
The @code{min_needed_to} and @code{max_needed_to} values serve the same
purpose but this time for the destination character set.
It is crucial that these values are accurate since otherwise the
conversion functions will have problems or not work at all.
@item int stateful
This element must also be initialized by the init function. It is
nonzero if the source character set is stateful. Otherwise it is zero.
@item void *data
This element can be used freely by the conversion functions in the
module. It can be used to communicate extra information from one call
to another. It need not be initialized if not needed at all. If this
element gets assigned a pointer to dynamically allocated memory
(presumably in the init function) it has to be made sure that the end
function deallocates the memory. Otherwise the application will leak
memory.
It is important to be aware that this data structure is shared by all
users of this specification conversion and therefore the @code{data}
element must not contain data specific to one specific use of the
conversion function.
@end table
@end deftp
@comment gconv.h
@comment GNU
@deftp {Data type} {struct gconv_step_data}
This is the data structure which contains the information specific to
each use of the conversion functions.
@table @code
@item char *outbuf
@itemx char *outbufend
These elements specify the output buffer for the conversion step. The
@code{outbuf} element points to the beginning of the buffer and
@code{outbufend} points to the byte following the last byte in the
buffer. The conversion function must not assume anything about the size
of the buffer but it can be safely assumed the there is room for at
least one complete character in the output buffer.
Once the conversion is finished and the conversion is the last step the
@code{outbuf} element must be modified to point after last last byte
written into the buffer to signal how much output is available. If this
conversion step is not the last one the element must not be modified.
The @code{outbufend} element must not be modified.
@item int is_last
This element is nonzero if this conversion step is the last one. This
information is necessary for the recursion. See the description of the
conversion function internals below. This element must never be
modified.
@item int invocation_counter
The conversion function can use this element to see how many calls of
the conversion function already happened. Some character sets require
when generating output a certain prolog and by comparing this value with
zero one can find out whether it is the first call and therefore the
prolog should be emitted or not. This element must never be modified.
@item int internal_use
This element is another one rarely used but needed in certain
situations. It got assigned a nonzero value in case the conversion
functions are used to implement @code{mbsrtowcs} et.al. I.e., the
function is not used directly through the @code{iconv} interface.
This sometimes makes a difference as it is expected that the
@code{iconv} functions are used to translate entire texts while the
@code{mbsrtowcs} functions are normally only used to convert single
strings and might be used multiple times to convert entire texts.
But in this situation we would have problem complying with some rules of
the character set specification. Some character sets require a prolog
which must appear exactly once for an entire text. If a number of
@code{mbsrtowcs} calls are used to convert the text only the first call
must add the prolog. But since there is no communication between the
different calls of @code{mbsrtowcs} the conversion functions have no
possibility to find this out. The situation is different for sequences
of @code{iconv} calls since the handle allows to access the needed
information.
This element is mostly used together with @code{invocation_counter} in a
way like this:
@smallexample
if (!data->internal_use && data->invocation_counter == 0)
/* @r{Emit prolog.} */
...
@end smallexample
This element must never be modified.
@item mbstate_t *statep
The @code{statep} element points to an object of type @code{mbstate_t}
(@pxref{Keeping the state}). The conversion of an stateful character
set must use the object pointed to by this element to store information
about the conversion state. The @code{statep} element itself must never
be modified.
@item mbstate_t __state
This element @emph{never} must be used directly. It is only part of
this structure to have the needed space allocated.
@end table
@end deftp
@subsubsection @code{iconv} module interfaces
With the knowledge about the data structures we now can describe the
conversion functions itself. To understand the interface a bit of
knowledge about the functionality in the C library which loads the
objects with the conversions is necessary.
It is often the case that one conversion is used more than once. I.e.,
there are several @code{iconv_open} calls for the same set of character
sets during one program run. The @code{mbsrtowcs} et.al.@: functions in
the GNU C library also use the @code{iconv} functionality which
increases the number of uses of the same functions even more.
For this reason the modules do not get loaded exclusively for one
conversion. Instead a module once loaded can be used by arbitrary many
@code{iconv} or @code{mbsrtowcs} calls at the same time. The splitting
of the information between conversion function specific information and
conversion data makes this possible. The last section showed the two
data structure used to do this.
This is of course also reflected in the interface and semantic of the
functions the modules must provide. There are three functions which
must have the following names:
@table @code
@item gconv_init
The @code{gconv_init} function initializes the conversion function
specific data structure. This very same object is shared by all
conversion which use this conversion and therefore no state information
about the conversion itself must be stored in here. If a module
implements more than one conversion the @code{gconv_init} function will be
called multiple times.
@item gconv_end
The @code{gconv_end} function is responsible to free all resources
allocated by the @code{gconv_init} function. If there is nothing to do
this function can be missing. Special care must be taken if the module
implements more than one conversion and the @code{gconv_init} function
does not allocate the same resources for all conversions.
@item gconv
This is the actual conversion function. It is called to convert one
block of text. It gets passed the conversion step information
initialized by @code{gconv_init} and the conversion data, specific to
this use of the conversion functions.
@end table
There are three data types defined for the three module interface
function and these define the interface.
@comment gconv.h
@comment GNU
@deftypevr {Data type} int (*gconv_init_fct) (struct gconv_step *)
This specifies the interface of the initialization function of the
module. It is called exactly once for each conversion the module
implements.
As explained int the description of the @code{struct gconv_step} data
structure above the initialization function has to initialize parts of
it.
@table @code
@item min_needed_from
@itemx max_needed_from
@itemx min_needed_to
@itemx max_needed_to
These elements must be initialized to the exact numbers of the minimum
and maximum number of bytes used by one character in the source and
destination character set respectively. If the characters all have the
same size the minimum and maximum values are the same.
@item stateful
This element must be initialized to an nonzero value if the source
character set is stateful. Otherwise it must be zero.
@end table
If the initialization function needs to communication some information
to the conversion function this can happen using the @code{data} element
of the @code{gconv_step} structure. But since this data is shared by
all the conversion is must not be modified by the conversion function.
How this can be used is shown in the example below.
@smallexample
#define MIN_NEEDED_FROM 1
#define MAX_NEEDED_FROM 4
#define MIN_NEEDED_TO 4
#define MAX_NEEDED_TO 4
int
gconv_init (struct gconv_step *step)
@{
/* @r{Determine which direction.} */
struct iso2022jp_data *new_data;
enum direction dir = illegal_dir;
enum variant var = illegal_var;
int result;
if (__strcasecmp (step->from_name, "ISO-2022-JP//") == 0)
@{
dir = from_iso2022jp;
var = iso2022jp;
@}
else if (__strcasecmp (step->to_name, "ISO-2022-JP//") == 0)
@{
dir = to_iso2022jp;
var = iso2022jp;
@}
else if (__strcasecmp (step->from_name, "ISO-2022-JP-2//") == 0)
@{
dir = from_iso2022jp;
var = iso2022jp2;
@}
else if (__strcasecmp (step->to_name, "ISO-2022-JP-2//") == 0)
@{
dir = to_iso2022jp;
var = iso2022jp2;
@}
result = GCONV_NOCONV;
if (dir != illegal_dir)
@{
new_data = (struct iso2022jp_data *)
malloc (sizeof (struct iso2022jp_data));
result = GCONV_NOMEM;
if (new_data != NULL)
@{
new_data->dir = dir;
new_data->var = var;
step->data = new_data;
if (dir == from_iso2022jp)
@{
step->min_needed_from = MIN_NEEDED_FROM;
step->max_needed_from = MAX_NEEDED_FROM;
step->min_needed_to = MIN_NEEDED_TO;
step->max_needed_to = MAX_NEEDED_TO;
@}
else
@{
step->min_needed_from = MIN_NEEDED_TO;
step->max_needed_from = MAX_NEEDED_TO;
step->min_needed_to = MIN_NEEDED_FROM;
step->max_needed_to = MAX_NEEDED_FROM + 2;
@}
/* @r{Yes, this is a stateful encoding.} */
step->stateful = 1;
result = GCONV_OK;
@}
@}
return result;
@}
@end smallexample
The function first checks which conversion is wanted. The module from
which this function is taken implements four different conversion and
which one is selected can be determined by comparing the names. The
comparison should always be done without paying attention to the case.
Then a data structure is allocated which contains the necessary
information about which conversion is selected. The data structure
@code{struct iso2022jp_data} is locally defined since outside the module
this data is not used at all. Please note that if all four conversions
this modules supports are requested there are four data blocks.
One interesting thing is the initialization of the @code{min_} and
@code{max_} elements of the step data object. A single ISO-2022-JP
character can consist of one to four bytes. Therefore the
@code{MIN_NEEDED_FROM} and @code{MAX_NEEDED_FROM} macros are defined
this way. The output is always the @code{INTERNAL} character set (aka
UCS4) and therefore each character consists of exactly four bytes. For
the conversion from @code{INTERNAL} to ISO-2022-JP we have to take into
account that escape sequences might be necessary to switch the character
sets. Therefore the @code{max_needed_to} element for this direction
gets assigned @code{MAX_NEEDED_FROM + 2}. This takes into account the
two bytes needed for the escape sequences to single the switching. The
asymmetry in the maximum values for the two directions can be explained
easily: when reading ISO-2022-JP text escape sequences can be handled
alone. I.e., it is not necessary to process a real character since the
effect of the escape sequence can be recorded in the state information.
The situation is different for the other direction. Since it is in
general not known which character comes next one cannot emit escape
sequences to change the state in advance. This means the escape
sequences which have to be emitted together with the next character.
Therefore one needs more room then only for the character itself.
The possible return values of the initialization function are:
@table @code
@item GCONV_OK
The initialization succeeded
@item GCONV_NOCONV
The requested conversion is not supported in the module. This can
happen if the @file{gconv-modules} file has errors.
@item GCONV_NOMEM
Memory required to store additional information could not be allocated.
@end table
@end deftypevr
The functions called before the module is unloaded is significantly
easier. It often has nothing at all to do in which case it can be left
out completely.
@comment gconv.h
@comment GNU
@deftypevr {Data type} void (*gconv_end_fct) (struct gconv_step *)
The task of this function is it to free all resources allocated in the
initialization function. Therefore only the @code{data} element of the
object pointed to by the argument is of interest. Continuing the
example from the initialization function, the finalization function
looks like this:
@smallexample
void
gconv_end (struct gconv_step *data)
@{
free (data->data);
@}
@end smallexample
@end deftypevr
The most important function is the conversion function itself. It can
get quite complicated for complex character sets. But since this is not
of interest here we will only describe a possible skeleton for the
conversion function.
@comment gconv.h
@comment GNU
@deftypevr {Data type} int (*gconv_fct) (struct gconv_step *, struct gconv_step_data *, const char **, const char *, size_t *, int)
The conversion function can be called for two basic reason: to convert
text or to reset the state. From the description of the @code{iconv}
function it can be seen why the flushing mode is necessary. What mode
is selected is determined by the sixth argument, an integer. If it is
nonzero it means that flushing is selected.
Common to both mode is where the output buffer can be found. The
information about this buffer is stored in the conversion step data. A
pointer to this is passed as the second argument to this function. The
description of the @code{struct gconv_step_data} structure has more
information on this.
@cindex stateful
What has to be done for flushing depends on the source character set.
If it is not stateful nothing has to be done. Otherwise the function
has to emit a byte sequence to bring the state object in the initial
state. Once this all happened the other conversion modules in the chain
of conversions have to get the same chance. Whether another step
follows can be determined from the @code{is_last} element of the step
data structure to which the first parameter points.
The more interesting mode is when actually text has to be converted.
The first step in this case is to convert as much text as possible from
the input buffer and store the result in the output buffer. The start
of the input buffer is determined by the third argument which is a
pointer to a pointer variable referencing the beginning of the buffer.
The fourth argument is a pointer to the byte right after the last byte
in the buffer.
The conversion has to be performed according to the current state if the
character set is stateful. The state is stored in an object pointed to
by the @code{statep} element of the step data (second argument). Once
either the input buffer is empty or the output buffer is full the
conversion stops. At this point the pointer variable referenced by the
third parameter must point to the byte following the last processed
byte. I.e., if all of the input is consumed this pointer and the fourth
parameter have the same value.
What now happens depends on whether this step is the last one or not.
If it is the last step the only thing which has to be done is to update
the @code{outbuf} element of the step data structure to point after the
last written byte. This gives the caller the information on how much
text is available in the output buffer. Beside this the variable
pointed to by the fifth parameter, which is of type @code{size_t}, must
be incremented by the number of characters (@emph{not bytes}) which were
written in the output buffer. Then the function can return.
In case the step is not the last one the later conversion functions have
to get a chance to do their work. Therefore the appropriate conversion
function has to be called. The information about the functions is
stored in the conversion data structures, passed as the first parameter.
This information and the step data are stored in arrays so the next
element in both cases can be found by simple pointer arithmetic:
@smallexample
int
gconv (struct gconv_step *step, struct gconv_step_data *data,
const char **inbuf, const char *inbufend, size_t *written,
int do_flush)
@{
struct gconv_step *next_step = step + 1;
struct gconv_step_data *next_data = data + 1;
...
@end smallexample
The @code{next_step} pointer references the next step information and
@code{next_data} the next data record. The call of the next function
therefore will look similar to this:
@smallexample
next_step->fct (next_step, next_data, &outerr, outbuf, written, 0)
@end smallexample
But this is not yet all. Once the function call returns the conversion
function might have some more to do. If the return value of the
function is @code{GCONV_EMPTY_INPUT} this means there is more room in
the output buffer. Unless the input buffer is empty the conversion
functions start all over again and processes the rest of the input
buffer. If the return value is not @code{GCONV_EMPTY_INPUT} something
went wrong and we have to recover from this.
A requirement for the conversion function is that the input buffer
pointer (the third argument) always points to the last character which
was put in the converted form in the output buffer. This is trivial
true after the conversion performed in the current step. But if the
conversion functions deeper down the stream stop prematurely not all
characters from the output buffer are consumed and therefore the input
buffer pointers must be backed of to the right position.
This is easy to do if the input and output character sets have a fixed
width for all characters. In this situation we can compute how many
characters are left in the output buffer and therefore can correct the
input buffer pointer appropriate with a similar computation. Things are
getting tricky if either character set has character represented with
variable length byte sequences and it gets even more complicated if the
conversion has to take care of the state. In these cases the conversion
has to be performed once again, from the known state before the initial
conversion. I.e., if necessary the state of the conversion has to be
reset and the conversion loop has to be executed again. The difference
now is that it is known how much input must be created and the
conversion can stop before converting the first unused character. Once
this is done the input buffer pointers must be updated again and the
function can return.
One final thing should be mentioned. If it is necessary for the
conversion to know whether it is the first invocation (in case a prolog
has to be emitted) the conversion function should just before returning
to the caller increment the @code{invocation_counter} element of the
step data structure. See the description of the @code{struct
gconv_step_data} structure above for more information on how this can be
used.
The return value must be one of the following values:
@table @code
@item GCONV_EMPTY_INPUT
All input was consumed and there is room left in the output buffer.
@item GCONV_OUTPUT_FULL
No more room in the output buffer. In case this is not the last step
this value is propagated down from the call of the next conversion
function in the chain.
@item GCONV_INCOMPLETE_INPUT
The input buffer is not entirely empty since it contains an incomplete
character sequence.
@end table
The following example provides a framework for a conversion function.
In case a new conversion has to be written the holes in this
implementation have to be filled and that is it.
@smallexample
int
gconv (struct gconv_step *step, struct gconv_step_data *data,
const char **inbuf, const char *inbufend, size_t *written,
int do_flush)
@{
struct gconv_step *next_step = step + 1;
struct gconv_step_data *next_data = data + 1;
gconv_fct fct = next_step->fct;
int status;
/* @r{If the function is called with no input this means we have}
@r{to reset to the initial state. The possibly partly}
@r{converted input is dropped.} */
if (do_flush)
@{
status = GCONV_OK;
/* @r{Possible emit a byte sequence which put the state object}
@r{into the initial state.} */
/* @r{Call the steps down the chain if there are any but only}
@r{if we successfully emitted the escape sequence.} */
if (status == GCONV_OK && ! data->is_last)
status = fct (next_step, next_data, NULL, NULL,
written, 1);
@}
else
@{
/* @r{We preserve the initial values of the pointer variables.} */
const char *inptr = *inbuf;
char *outbuf = data->outbuf;
char *outend = data->outbufend;
char *outptr;
/* @r{This variable is used to count the number of characters}
@r{we actually converted.} */
size_t converted = 0;
do
@{
/* @r{Remember the start value for this round.} */
inptr = *inbuf;
/* @r{The outbuf buffer is empty.} */
outptr = outbuf;
/* @r{For stateful encodings the state must be safe here.} */
/* @r{Run the conversion loop. @code{status} is set}
@r{appropriately afterwards.} */
/* @r{If this is the last step leave the loop, there is}
@r{nothing we can do.} */
if (data->is_last)
@{
/* @r{Store information about how many bytes are}
@r{available.} */
data->outbuf = outbuf;
/* @r{Remember how many characters we converted.} */
*written += converted;
break;
@}
/* @r{Write out all output which was produced.} */
if (outbuf > outptr)
@{
const char *outerr = data->outbuf;
int result;
result = fct (next_step, next_data, &outerr,
outbuf, written, 0);
if (result != GCONV_EMPTY_INPUT)
@{
if (outerr != outbuf)
@{
/* @r{Reset the input buffer pointer. We}
@r{document here the complex case.} */
size_t nstatus;
/* @r{Reload the pointers.} */
*inbuf = inptr;
outbuf = outptr;
/* @r{Possibly reset the state.} */
/* @r{Redo the conversion, but this time}
@r{the end of the output buffer is at}
@r{@code{outerr}.} */
@}
/* @r{Change the status.} */
status = result;
@}
else
/* @r{All the output is consumed, we can make}
@r{ another run if everything was ok.} */
if (status == GCONV_FULL_OUTPUT)
status = GCONV_OK;
@}
@}
while (status == GCONV_OK);
/* @r{We finished one use of this step.} */
++data->invocation_counter;
@}
return status;
@}
@end smallexample
@end deftypevr
This information should be sufficient to write new modules. Anybody
doing so should also take a look at the available source code in the GNU
C library sources. It contains many examples of working and optimized
modules.
|