about summary refs log tree commit diff
path: root/manual/arith.texi
blob: b3f646a1876fc31d5e79236cf40bfba4c6776632 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
@node Arithmetic, Date and Time, Mathematics, Top
@chapter Low-Level Arithmetic Functions

This chapter contains information about functions for doing basic
arithmetic operations, such as splitting a float into its integer and
fractional parts.  These functions are declared in the header file
@file{math.h}.

@menu
* Not a Number::                Making NaNs and testing for NaNs.
* Predicates on Floats::        Testing for infinity and for NaNs.
* Absolute Value::              Absolute value functions.
* Normalization Functions::     Hacks for radix-2 representations.
* Rounding and Remainders::     Determinining the integer and
			         fractional parts of a float.
* Integer Division::            Functions for performing integer
				 division.
* Parsing of Numbers::          Functions for ``reading'' numbers
			         from strings.
@end menu

@node Not a Number
@section ``Not a Number'' Values
@cindex NaN
@cindex not a number
@cindex IEEE floating point

The IEEE floating point format used by most modern computers supports
values that are ``not a number''.  These values are called @dfn{NaNs}.
``Not a number'' values result from certain operations which have no
meaningful numeric result, such as zero divided by zero or infinity
divided by infinity.

One noteworthy property of NaNs is that they are not equal to
themselves.  Thus, @code{x == x} can be 0 if the value of @code{x} is a
NaN.  You can use this to test whether a value is a NaN or not: if it is
not equal to itself, then it is a NaN.  But the recommended way to test
for a NaN is with the @code{isnan} function (@pxref{Predicates on Floats}).

Almost any arithmetic operation in which one argument is a NaN returns
a NaN.

@comment math.h
@comment GNU
@deftypevr Macro double NAN
An expression representing a value which is ``not a number''.  This
macro is a GNU extension, available only on machines that support ``not
a number'' values---that is to say, on all machines that support IEEE
floating point.

You can use @samp{#ifdef NAN} to test whether the machine supports
NaNs.  (Of course, you must arrange for GNU extensions to be visible,
such as by defining @code{_GNU_SOURCE}, and then you must include
@file{math.h}.)
@end deftypevr

@node Predicates on Floats
@section Predicates on Floats

@pindex math.h
This section describes some miscellaneous test functions on doubles.
Prototypes for these functions appear in @file{math.h}.  These are BSD
functions, and thus are available if you define @code{_BSD_SOURCE} or
@code{_GNU_SOURCE}.

@comment math.h
@comment BSD
@deftypefun int isinf (double @var{x})
This function returns @code{-1} if @var{x} represents negative infinity,
@code{1} if @var{x} represents positive infinity, and @code{0} otherwise.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun int isnan (double @var{x})
This function returns a nonzero value if @var{x} is a ``not a number''
value, and zero otherwise.  (You can just as well use @code{@var{x} !=
@var{x}} to get the same result).
@end deftypefun

@comment math.h
@comment BSD
@deftypefun int finite (double @var{x})
This function returns a nonzero value if @var{x} is finite or a ``not a
number'' value, and zero otherwise.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double infnan (int @var{error})
This function is provided for compatibility with BSD.  The other
mathematical functions use @code{infnan} to decide what to return on
occasion of an error.  Its argument is an error code, @code{EDOM} or
@code{ERANGE}; @code{infnan} returns a suitable value to indicate this
with.  @code{-ERANGE} is also acceptable as an argument, and corresponds
to @code{-HUGE_VAL} as a value.

In the BSD library, on certain machines, @code{infnan} raises a fatal
signal in all cases.  The GNU library does not do likewise, because that
does not fit the ANSI C specification.
@end deftypefun

@strong{Portability Note:} The functions listed in this section are BSD
extensions.

@node Absolute Value
@section Absolute Value
@cindex absolute value functions

These functions are provided for obtaining the @dfn{absolute value} (or
@dfn{magnitude}) of a number.  The absolute value of a real number
@var{x} is @var{x} is @var{x} is positive, @minus{}@var{x} if @var{x} is
negative.  For a complex number @var{z}, whose real part is @var{x} and
whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
(@var{x}*@var{x} + @var{y}*@var{y})}}.

@pindex math.h
@pindex stdlib.h
Prototypes for @code{abs} and @code{labs} are in @file{stdlib.h};
@code{fabs} and @code{cabs} are declared in @file{math.h}.

@comment stdlib.h
@comment ANSI
@deftypefun int abs (int @var{number})
This function returns the absolute value of @var{number}.

Most computers use a two's complement integer representation, in which
the absolute value of @code{INT_MIN} (the smallest possible @code{int})
cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined.
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftypefun {long int} labs (long int @var{number})
This is similar to @code{abs}, except that both the argument and result
are of type @code{long int} rather than @code{int}.
@end deftypefun

@comment math.h
@comment ANSI
@deftypefun double fabs (double @var{number})
This function returns the absolute value of the floating-point number
@var{number}.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double cabs (struct @{ double real, imag; @} @var{z})
The @code{cabs} function returns the absolute value of the complex
number @var{z}, whose real part is @code{@var{z}.real} and whose
imaginary part is @code{@var{z}.imag}.  (See also the function
@code{hypot} in @ref{Exponents and Logarithms}.)  The value is:

@smallexample
sqrt (@var{z}.real*@var{z}.real + @var{z}.imag*@var{z}.imag)
@end smallexample
@end deftypefun

@node Normalization Functions
@section Normalization Functions
@cindex normalization functions (floating-point)

The functions described in this section are primarily provided as a way
to efficiently perform certain low-level manipulations on floating point
numbers that are represented internally using a binary radix;
see @ref{Floating Point Concepts}.  These functions are required to
have equivalent behavior even if the representation does not use a radix
of 2, but of course they are unlikely to be particularly efficient in
those cases.

@pindex math.h
All these functions are declared in @file{math.h}.

@comment math.h
@comment ANSI
@deftypefun double frexp (double @var{value}, int *@var{exponent})
The @code{frexp} function is used to split the number @var{value}
into a normalized fraction and an exponent.

If the argument @var{value} is not zero, the return value is @var{value}
times a power of two, and is always in the range 1/2 (inclusive) to 1
(exclusive).  The corresponding exponent is stored in
@code{*@var{exponent}}; the return value multiplied by 2 raised to this
exponent equals the original number @var{value}.

For example, @code{frexp (12.8, &exponent)} returns @code{0.8} and
stores @code{4} in @code{exponent}.

If @var{value} is zero, then the return value is zero and
zero is stored in @code{*@var{exponent}}.
@end deftypefun

@comment math.h
@comment ANSI
@deftypefun double ldexp (double @var{value}, int @var{exponent})
This function returns the result of multiplying the floating-point
number @var{value} by 2 raised to the power @var{exponent}.  (It can
be used to reassemble floating-point numbers that were taken apart
by @code{frexp}.)

For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
@end deftypefun

The following functions which come from BSD provide facilities
equivalent to those of @code{ldexp} and @code{frexp}:

@comment math.h
@comment BSD
@deftypefun double scalb (double @var{value}, int @var{exponent})
The @code{scalb} function is the BSD name for @code{ldexp}.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double logb (double @var{x})
This BSD function returns the integer part of the base-2 logarithm of
@var{x}, an integer value represented in type @code{double}.  This is
the highest integer power of @code{2} contained in @var{x}.  The sign of
@var{x} is ignored.  For example, @code{logb (3.5)} is @code{1.0} and
@code{logb (4.0)} is @code{2.0}.

When @code{2} raised to this power is divided into @var{x}, it gives a
quotient between @code{1} (inclusive) and @code{2} (exclusive).

If @var{x} is zero, the value is minus infinity (if the machine supports
such a value), or else a very small number.  If @var{x} is infinity, the
value is infinity.

The value returned by @code{logb} is one less than the value that
@code{frexp} would store into @code{*@var{exponent}}.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double copysign (double @var{value}, double @var{sign})
The @code{copysign} function returns a value whose absolute value is the
same as that of @var{value}, and whose sign matches that of @var{sign}.
This is a BSD function.
@end deftypefun

@node Rounding and Remainders
@section Rounding and Remainder Functions
@cindex rounding functions
@cindex remainder functions
@cindex converting floats to integers

@pindex math.h
The functions listed here perform operations such as rounding,
truncation, and remainder in division of floating point numbers.  Some
of these functions convert floating point numbers to integer values.
They are all declared in @file{math.h}.

You can also convert floating-point numbers to integers simply by
casting them to @code{int}.  This discards the fractional part,
effectively rounding towards zero.  However, this only works if the
result can actually be represented as an @code{int}---for very large
numbers, this is impossible.  The functions listed here return the
result as a @code{double} instead to get around this problem.

@comment math.h
@comment ANSI
@deftypefun double ceil (double @var{x})
The @code{ceil} function rounds @var{x} upwards to the nearest integer,
returning that value as a @code{double}.  Thus, @code{ceil (1.5)}
is @code{2.0}.
@end deftypefun

@comment math.h
@comment ANSI
@deftypefun double floor (double @var{x})
The @code{ceil} function rounds @var{x} downwards to the nearest
integer, returning that value as a @code{double}.  Thus, @code{floor
(1.5)} is @code{1.0} and @code{floor (-1.5)} is @code{-2.0}.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double rint (double @var{x})
This function rounds @var{x} to an integer value according to the
current rounding mode.  @xref{Floating Point Parameters}, for
information about the various rounding modes.  The default
rounding mode is to round to the nearest integer; some machines
support other modes, but round-to-nearest is always used unless
you explicit select another.
@end deftypefun

@comment math.h
@comment ANSI
@deftypefun double modf (double @var{value}, double *@var{integer-part})
This function breaks the argument @var{value} into an integer part and a
fractional part (between @code{-1} and @code{1}, exclusive).  Their sum
equals @var{value}.  Each of the parts has the same sign as @var{value},
so the rounding of the integer part is towards zero.

@code{modf} stores the integer part in @code{*@var{integer-part}}, and
returns the fractional part.  For example, @code{modf (2.5, &intpart)}
returns @code{0.5} and stores @code{2.0} into @code{intpart}.
@end deftypefun

@comment math.h
@comment ANSI
@deftypefun double fmod (double @var{numerator}, double @var{denominator})
This function computes the remainder from the division of
@var{numerator} by @var{denominator}.  Specifically, the return value is
@code{@var{numerator} - @w{@var{n} * @var{denominator}}}, where @var{n}
is the quotient of @var{numerator} divided by @var{denominator}, rounded
towards zero to an integer.  Thus, @w{@code{fmod (6.5, 2.3)}} returns
@code{1.9}, which is @code{6.5} minus @code{4.6}.

The result has the same sign as the @var{numerator} and has magnitude
less than the magnitude of the @var{denominator}.

If @var{denominator} is zero, @code{fmod} fails and sets @code{errno} to
@code{EDOM}.
@end deftypefun

@comment math.h
@comment BSD
@deftypefun double drem (double @var{numerator}, double @var{denominator})
The function @code{drem} is like @code{fmod} except that it rounds the
internal quotient @var{n} to the nearest integer instead of towards zero
to an integer.  For example, @code{drem (6.5, 2.3)} returns @code{-0.4},
which is @code{6.5} minus @code{6.9}.

The absolute value of the result is less than or equal to half the
absolute value of the @var{denominator}.  The difference between
@code{fmod (@var{numerator}, @var{denominator})} and @code{drem
(@var{numerator}, @var{denominator})} is always either
@var{denominator}, minus @var{denominator}, or zero.

If @var{denominator} is zero, @code{drem} fails and sets @code{errno} to
@code{EDOM}.
@end deftypefun


@node Integer Division
@section Integer Division
@cindex integer division functions

This section describes functions for performing integer division.  These
functions are redundant in the GNU C library, since in GNU C the @samp{/}
operator always rounds towards zero.  But in other C implementations,
@samp{/} may round differently with negative arguments.  @code{div} and
@code{ldiv} are useful because they specify how to round the quotient:
towards zero.  The remainder has the same sign as the numerator.

These functions are specified to return a result @var{r} such that the value
@code{@var{r}.quot*@var{denominator} + @var{r}.rem} equals
@var{numerator}.

@pindex stdlib.h
To use these facilities, you should include the header file
@file{stdlib.h} in your program.

@comment stdlib.h
@comment ANSI
@deftp {Data Type} div_t
This is a structure type used to hold the result returned by the @code{div}
function.  It has the following members:

@table @code
@item int quot
The quotient from the division.

@item int rem
The remainder from the division.
@end table
@end deftp

@comment stdlib.h
@comment ANSI
@deftypefun div_t div (int @var{numerator}, int @var{denominator})
This function @code{div} computes the quotient and remainder from
the division of @var{numerator} by @var{denominator}, returning the
result in a structure of type @code{div_t}.

If the result cannot be represented (as in a division by zero), the
behavior is undefined.

Here is an example, albeit not a very useful one.

@smallexample
div_t result;
result = div (20, -6);
@end smallexample

@noindent
Now @code{result.quot} is @code{-3} and @code{result.rem} is @code{2}.
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftp {Data Type} ldiv_t
This is a structure type used to hold the result returned by the @code{ldiv}
function.  It has the following members:

@table @code
@item long int quot
The quotient from the division.

@item long int rem
The remainder from the division.
@end table

(This is identical to @code{div_t} except that the components are of
type @code{long int} rather than @code{int}.)
@end deftp

@comment stdlib.h
@comment ANSI
@deftypefun ldiv_t ldiv (long int @var{numerator}, long int @var{denominator})
The @code{ldiv} function is similar to @code{div}, except that the
arguments are of type @code{long int} and the result is returned as a
structure of type @code{ldiv}.
@end deftypefun


@node Parsing of Numbers
@section Parsing of Numbers
@cindex parsing numbers (in formatted input)
@cindex converting strings to numbers
@cindex number syntax, parsing
@cindex syntax, for reading numbers

This section describes functions for ``reading'' integer and
floating-point numbers from a string.  It may be more convenient in some
cases to use @code{sscanf} or one of the related functions; see
@ref{Formatted Input}.  But often you can make a program more robust by
finding the tokens in the string by hand, then converting the numbers
one by one.

@menu
* Parsing of Integers::         Functions for conversion of integer values.
* Parsing of Floats::           Functions for conversion of floating-point
				 values.
@end menu

@node Parsing of Integers
@subsection Parsing of Integers

@pindex stdlib.h
These functions are declared in @file{stdlib.h}.

@comment stdlib.h
@comment ANSI
@deftypefun {long int} strtol (const char *@var{string}, char **@var{tailptr}, int @var{base})
The @code{strtol} (``string-to-long'') function converts the initial
part of @var{string} to a signed integer, which is returned as a value
of type @code{long int}.

This function attempts to decompose @var{string} as follows:

@itemize @bullet
@item
A (possibly empty) sequence of whitespace characters.  Which characters
are whitespace is determined by the @code{isspace} function
(@pxref{Classification of Characters}).  These are discarded.

@item
An optional plus or minus sign (@samp{+} or @samp{-}).

@item
A nonempty sequence of digits in the radix specified by @var{base}.

If @var{base} is zero, decimal radix is assumed unless the series of
digits begins with @samp{0} (specifying octal radix), or @samp{0x} or
@samp{0X} (specifying hexadecimal radix); in other words, the same
syntax used for integer constants in C.

Otherwise @var{base} must have a value between @code{2} and @code{35}.
If @var{base} is @code{16}, the digits may optionally be preceded by
@samp{0x} or @samp{0X}.

@item
Any remaining characters in the string.  If @var{tailptr} is not a null
pointer, @code{strtol} stores a pointer to this tail in
@code{*@var{tailptr}}.
@end itemize

If the string is empty, contains only whitespace, or does not contain an
initial substring that has the expected syntax for an integer in the
specified @var{base}, no conversion is performed.  In this case,
@code{strtol} returns a value of zero and the value stored in
@code{*@var{tailptr}} is the value of @var{string}.

In a locale other than the standard @code{"C"} locale, this function
may recognize additional implementation-dependent syntax.

If the string has valid syntax for an integer but the value is not
representable because of overflow, @code{strtol} returns either
@code{LONG_MAX} or @code{LONG_MIN} (@pxref{Range of Type}), as
appropriate for the sign of the value.  It also sets @code{errno}
to @code{ERANGE} to indicate there was overflow.

There is an example at the end of this section.
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftypefun {unsigned long int} strtoul (const char *@var{string}, char **@var{tailptr}, int @var{base})
The @code{strtoul} (``string-to-unsigned-long'') function is like
@code{strtol} except it deals with unsigned numbers, and returns its
value with type @code{unsigned long int}.  No @samp{+} or @samp{-} sign
may appear before the number, but the syntax is otherwise the same as
described above for @code{strtol}.  The value returned in case of
overflow is @code{ULONG_MAX} (@pxref{Range of Type}).
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftypefun {long int} atol (const char *@var{string})
This function is similar to the @code{strtol} function with a @var{base}
argument of @code{10}, except that it need not detect overflow errors.
The @code{atol} function is provided mostly for compatibility with
existing code; using @code{strtol} is more robust.
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftypefun int atoi (const char *@var{string})
This function is like @code{atol}, except that it returns an @code{int}
value rather than @code{long int}.  The @code{atoi} function is also
considered obsolete; use @code{strtol} instead.
@end deftypefun

Here is a function which parses a string as a sequence of integers and
returns the sum of them:

@smallexample
int
sum_ints_from_string (char *string)
@{
  int sum = 0;

  while (1) @{
    char *tail;
    int next;

    /* @r{Skip whitespace by hand, to detect the end.}  */
    while (isspace (*string)) string++;
    if (*string == 0)
      break;

    /* @r{There is more nonwhitespace,}  */
    /* @r{so it ought to be another number.}  */
    errno = 0;
    /* @r{Parse it.}  */
    next = strtol (string, &tail, 0);
    /* @r{Add it in, if not overflow.}  */
    if (errno)
      printf ("Overflow\n");
    else
      sum += next;
    /* @r{Advance past it.}  */
    string = tail;
  @}

  return sum;
@}
@end smallexample

@node Parsing of Floats
@subsection Parsing of Floats

@pindex stdlib.h
These functions are declared in @file{stdlib.h}.

@comment stdlib.h
@comment ANSI
@deftypefun double strtod (const char *@var{string}, char **@var{tailptr})
The @code{strtod} (``string-to-double'') function converts the initial
part of @var{string} to a floating-point number, which is returned as a
value of type @code{double}.

This function attempts to decompose @var{string} as follows:

@itemize @bullet
@item
A (possibly empty) sequence of whitespace characters.  Which characters
are whitespace is determined by the @code{isspace} function
(@pxref{Classification of Characters}).  These are discarded.

@item
An optional plus or minus sign (@samp{+} or @samp{-}).

@item
A nonempty sequence of digits optionally containing a decimal-point
character---normally @samp{.}, but it depends on the locale
(@pxref{Numeric Formatting}).

@item
An optional exponent part, consisting of a character @samp{e} or
@samp{E}, an optional sign, and a sequence of digits.

@item
Any remaining characters in the string.  If @var{tailptr} is not a null
pointer, a pointer to this tail of the string is stored in
@code{*@var{tailptr}}.
@end itemize

If the string is empty, contains only whitespace, or does not contain an
initial substring that has the expected syntax for a floating-point
number, no conversion is performed.  In this case, @code{strtod} returns
a value of zero and the value returned in @code{*@var{tailptr}} is the
value of @var{string}.

In a locale other than the standard @code{"C"} locale, this function may
recognize additional locale-dependent syntax.

If the string has valid syntax for a floating-point number but the value
is not representable because of overflow, @code{strtod} returns either
positive or negative @code{HUGE_VAL} (@pxref{Mathematics}), depending on
the sign of the value.  Similarly, if the value is not representable
because of underflow, @code{strtod} returns zero.  It also sets @code{errno}
to @code{ERANGE} if there was overflow or underflow.
@end deftypefun

@comment stdlib.h
@comment ANSI
@deftypefun double atof (const char *@var{string})
This function is similar to the @code{strtod} function, except that it
need not detect overflow and underflow errors.  The @code{atof} function
is provided mostly for compatibility with existing code; using
@code{strtod} is more robust.
@end deftypefun