1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/* Linuxthreads - a simple clone()-based implementation of Posix */
/* threads for Linux. */
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Library General Public License for more details. */
/* Mutexes */
#include <bits/libc-lock.h>
#include <errno.h>
#include <sched.h>
#include <stddef.h>
#include <limits.h>
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "queue.h"
#include "restart.h"
int __pthread_mutex_init(pthread_mutex_t * mutex,
const pthread_mutexattr_t * mutex_attr)
{
__pthread_init_lock(&mutex->__m_lock);
mutex->__m_kind =
mutex_attr == NULL ? PTHREAD_MUTEX_TIMED_NP : mutex_attr->__mutexkind;
mutex->__m_count = 0;
mutex->__m_owner = NULL;
return 0;
}
strong_alias (__pthread_mutex_init, pthread_mutex_init)
int __pthread_mutex_destroy(pthread_mutex_t * mutex)
{
switch (mutex->__m_kind) {
case PTHREAD_MUTEX_ADAPTIVE_NP:
case PTHREAD_MUTEX_RECURSIVE_NP:
if ((mutex->__m_lock.__status & 1) != 0)
return EBUSY;
return 0;
case PTHREAD_MUTEX_ERRORCHECK_NP:
case PTHREAD_MUTEX_TIMED_NP:
if (mutex->__m_lock.__status != 0)
return EBUSY;
return 0;
default:
return EINVAL;
}
}
strong_alias (__pthread_mutex_destroy, pthread_mutex_destroy)
int __pthread_mutex_trylock(pthread_mutex_t * mutex)
{
pthread_descr self;
int retcode;
switch(mutex->__m_kind) {
case PTHREAD_MUTEX_ADAPTIVE_NP:
retcode = __pthread_trylock(&mutex->__m_lock);
return retcode;
case PTHREAD_MUTEX_RECURSIVE_NP:
self = thread_self();
if (mutex->__m_owner == self) {
mutex->__m_count++;
return 0;
}
retcode = __pthread_trylock(&mutex->__m_lock);
if (retcode == 0) {
mutex->__m_owner = self;
mutex->__m_count = 0;
}
return retcode;
case PTHREAD_MUTEX_ERRORCHECK_NP:
retcode = __pthread_alt_trylock(&mutex->__m_lock);
if (retcode == 0) {
mutex->__m_owner = thread_self();
}
return retcode;
case PTHREAD_MUTEX_TIMED_NP:
retcode = __pthread_alt_trylock(&mutex->__m_lock);
return retcode;
default:
return EINVAL;
}
}
strong_alias (__pthread_mutex_trylock, pthread_mutex_trylock)
int __pthread_mutex_lock(pthread_mutex_t * mutex)
{
pthread_descr self;
switch(mutex->__m_kind) {
case PTHREAD_MUTEX_ADAPTIVE_NP:
__pthread_lock(&mutex->__m_lock, NULL);
return 0;
case PTHREAD_MUTEX_RECURSIVE_NP:
self = thread_self();
if (mutex->__m_owner == self) {
mutex->__m_count++;
return 0;
}
__pthread_lock(&mutex->__m_lock, self);
mutex->__m_owner = self;
mutex->__m_count = 0;
return 0;
case PTHREAD_MUTEX_ERRORCHECK_NP:
self = thread_self();
if (mutex->__m_owner == self) return EDEADLK;
__pthread_alt_lock(&mutex->__m_lock, self);
mutex->__m_owner = self;
return 0;
case PTHREAD_MUTEX_TIMED_NP:
__pthread_alt_lock(&mutex->__m_lock, NULL);
return 0;
default:
return EINVAL;
}
}
strong_alias (__pthread_mutex_lock, pthread_mutex_lock)
int __pthread_mutex_timedlock (pthread_mutex_t *mutex,
const struct timespec *abstime)
{
pthread_descr self;
int res;
if (__builtin_expect (abstime->tv_nsec, 0) < 0
|| __builtin_expect (abstime->tv_nsec, 0) >= 1000000000)
return EINVAL;
switch(mutex->__m_kind) {
case PTHREAD_MUTEX_ADAPTIVE_NP:
__pthread_lock(&mutex->__m_lock, NULL);
return 0;
case PTHREAD_MUTEX_RECURSIVE_NP:
self = thread_self();
if (mutex->__m_owner == self) {
mutex->__m_count++;
return 0;
}
__pthread_lock(&mutex->__m_lock, self);
mutex->__m_owner = self;
mutex->__m_count = 0;
return 0;
case PTHREAD_MUTEX_ERRORCHECK_NP:
self = thread_self();
if (mutex->__m_owner == self) return EDEADLK;
res = __pthread_alt_timedlock(&mutex->__m_lock, self, abstime);
if (res != 0)
{
mutex->__m_owner = self;
return 0;
}
return ETIMEDOUT;
case PTHREAD_MUTEX_TIMED_NP:
/* Only this type supports timed out lock. */
return (__pthread_alt_timedlock(&mutex->__m_lock, NULL, abstime)
? 0 : ETIMEDOUT);
default:
return EINVAL;
}
}
strong_alias (__pthread_mutex_timedlock, pthread_mutex_timedlock)
int __pthread_mutex_unlock(pthread_mutex_t * mutex)
{
switch (mutex->__m_kind) {
case PTHREAD_MUTEX_ADAPTIVE_NP:
__pthread_unlock(&mutex->__m_lock);
return 0;
case PTHREAD_MUTEX_RECURSIVE_NP:
if (mutex->__m_owner != thread_self())
return EPERM;
if (mutex->__m_count > 0) {
mutex->__m_count--;
return 0;
}
mutex->__m_owner = NULL;
__pthread_unlock(&mutex->__m_lock);
return 0;
case PTHREAD_MUTEX_ERRORCHECK_NP:
if (mutex->__m_owner != thread_self() || mutex->__m_lock.__status == 0)
return EPERM;
mutex->__m_owner = NULL;
__pthread_alt_unlock(&mutex->__m_lock);
return 0;
case PTHREAD_MUTEX_TIMED_NP:
__pthread_alt_unlock(&mutex->__m_lock);
return 0;
default:
return EINVAL;
}
}
strong_alias (__pthread_mutex_unlock, pthread_mutex_unlock)
int __pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
attr->__mutexkind = PTHREAD_MUTEX_TIMED_NP;
return 0;
}
strong_alias (__pthread_mutexattr_init, pthread_mutexattr_init)
int __pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
return 0;
}
strong_alias (__pthread_mutexattr_destroy, pthread_mutexattr_destroy)
int __pthread_mutexattr_settype(pthread_mutexattr_t *attr, int kind)
{
if (kind != PTHREAD_MUTEX_ADAPTIVE_NP
&& kind != PTHREAD_MUTEX_RECURSIVE_NP
&& kind != PTHREAD_MUTEX_ERRORCHECK_NP
&& kind != PTHREAD_MUTEX_TIMED_NP)
return EINVAL;
attr->__mutexkind = kind;
return 0;
}
weak_alias (__pthread_mutexattr_settype, pthread_mutexattr_settype)
strong_alias ( __pthread_mutexattr_settype, __pthread_mutexattr_setkind_np)
weak_alias (__pthread_mutexattr_setkind_np, pthread_mutexattr_setkind_np)
int __pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *kind)
{
*kind = attr->__mutexkind;
return 0;
}
weak_alias (__pthread_mutexattr_gettype, pthread_mutexattr_gettype)
strong_alias (__pthread_mutexattr_gettype, __pthread_mutexattr_getkind_np)
weak_alias (__pthread_mutexattr_getkind_np, pthread_mutexattr_getkind_np)
int __pthread_mutexattr_getpshared (const pthread_mutexattr_t *attr,
int *pshared)
{
*pshared = PTHREAD_PROCESS_PRIVATE;
return 0;
}
weak_alias (__pthread_mutexattr_getpshared, pthread_mutexattr_getpshared)
int __pthread_mutexattr_setpshared (pthread_mutexattr_t *attr, int pshared)
{
if (pshared != PTHREAD_PROCESS_PRIVATE && pshared != PTHREAD_PROCESS_SHARED)
return EINVAL;
/* For now it is not possible to shared a conditional variable. */
if (pshared != PTHREAD_PROCESS_PRIVATE)
return ENOSYS;
return 0;
}
weak_alias (__pthread_mutexattr_setpshared, pthread_mutexattr_setpshared)
/* Once-only execution */
static pthread_mutex_t once_masterlock = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t once_finished = PTHREAD_COND_INITIALIZER;
static int fork_generation = 0; /* Child process increments this after fork. */
enum { NEVER = 0, IN_PROGRESS = 1, DONE = 2 };
/* If a thread is canceled while calling the init_routine out of
pthread once, this handler will reset the once_control variable
to the NEVER state. */
static void pthread_once_cancelhandler(void *arg)
{
pthread_once_t *once_control = arg;
pthread_mutex_lock(&once_masterlock);
*once_control = NEVER;
pthread_mutex_unlock(&once_masterlock);
pthread_cond_broadcast(&once_finished);
}
int __pthread_once(pthread_once_t * once_control, void (*init_routine)(void))
{
/* flag for doing the condition broadcast outside of mutex */
int state_changed;
/* Test without locking first for speed */
if (*once_control == DONE) return 0;
/* Lock and test again */
state_changed = 0;
pthread_mutex_lock(&once_masterlock);
/* If this object was left in an IN_PROGRESS state in a parent
process (indicated by stale generation field), reset it to NEVER. */
if ((*once_control & 3) == IN_PROGRESS && (*once_control & ~3) != fork_generation)
*once_control = NEVER;
/* If init_routine is being called from another routine, wait until
it completes. */
while ((*once_control & 3) == IN_PROGRESS) {
pthread_cond_wait(&once_finished, &once_masterlock);
}
/* Here *once_control is stable and either NEVER or DONE. */
if (*once_control == NEVER) {
*once_control = IN_PROGRESS | fork_generation;
pthread_mutex_unlock(&once_masterlock);
pthread_cleanup_push(pthread_once_cancelhandler, once_control);
init_routine();
pthread_cleanup_pop(0);
pthread_mutex_lock(&once_masterlock);
*once_control = DONE;
state_changed = 1;
}
pthread_mutex_unlock(&once_masterlock);
if (state_changed)
pthread_cond_broadcast(&once_finished);
return 0;
}
strong_alias (__pthread_once, pthread_once)
/*
* Handle the state of the pthread_once mechanism across forks. The
* once_masterlock is acquired in the parent process prior to a fork to ensure
* that no thread is in the critical region protected by the lock. After the
* fork, the lock is released. In the child, the lock and the condition
* variable are simply reset. The child also increments its generation
* counter which lets pthread_once calls detect stale IN_PROGRESS states
* and reset them back to NEVER.
*/
void __pthread_once_fork_prepare(void)
{
pthread_mutex_lock(&once_masterlock);
}
void __pthread_once_fork_parent(void)
{
pthread_mutex_unlock(&once_masterlock);
}
void __pthread_once_fork_child(void)
{
pthread_mutex_init(&once_masterlock, NULL);
pthread_cond_init(&once_finished, NULL);
if (fork_generation <= INT_MAX - 4)
fork_generation += 4; /* leave least significant two bits zero */
else
fork_generation = 0;
}
|