about summary refs log tree commit diff
path: root/elf/dl-addr.c
blob: 5d3719adb23eeb190e23dd173c6aba8ef8e6cbfe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* Locate the shared object symbol nearest a given address.
   Copyright (C) 1996-2004, 2005, 2006 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <dlfcn.h>
#include <stddef.h>
#include <ldsodefs.h>


int
internal_function
_dl_addr (const void *address, Dl_info *info,
	  struct link_map **mapp, const ElfW(Sym) **symbolp)
{
  const ElfW(Addr) addr = DL_LOOKUP_ADDRESS (address);

  /* Protect against concurrent loads and unloads.  */
  __rtld_lock_lock_recursive (GL(dl_load_lock));

  /* Find the highest-addressed object that ADDRESS is not below.  */
  struct link_map *match = NULL;
  for (Lmid_t ns = 0; ns < DL_NNS; ++ns)
    for (struct link_map *l = GL(dl_ns)[ns]._ns_loaded; l; l = l->l_next)
      if (addr >= l->l_map_start && addr < l->l_map_end)
	{
	  /* We know ADDRESS lies within L if in any shared object.
	     Make sure it isn't past the end of L's segments.  */
	  size_t n = l->l_phnum;
	  if (n > 0)
	    {
	      do
		--n;
	      while (l->l_phdr[n].p_type != PT_LOAD);
	      if (addr >= (l->l_addr +
			   l->l_phdr[n].p_vaddr + l->l_phdr[n].p_memsz))
		/* Off the end of the highest-addressed shared object.  */
		continue;
	    }

	  match = l;
	  break;
	}

  int result = 0;
  if (match != NULL)
    {
      /* Now we know what object the address lies in.  */
      info->dli_fname = match->l_name;
      info->dli_fbase = (void *) match->l_map_start;

      /* If this is the main program the information is incomplete.  */
      if (__builtin_expect (match->l_name[0], 'a') == '\0'
	  && match->l_type == lt_executable)
	info->dli_fname = _dl_argv[0];

      const ElfW(Sym) *symtab
	= (const ElfW(Sym) *) D_PTR (match, l_info[DT_SYMTAB]);
      const char *strtab = (const char *) D_PTR (match, l_info[DT_STRTAB]);

      ElfW(Word) strtabsize = match->l_info[DT_STRSZ]->d_un.d_val;

      const ElfW(Sym) *matchsym = NULL;
      if (match->l_info[DT_ADDRTAGIDX (DT_GNU_HASH) + DT_NUM + DT_THISPROCNUM
			+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM] != NULL)
	{
	  /* We look at all symbol table entries referenced by the
	     hash table.  */
	  for (Elf_Symndx bucket = 0; bucket < match->l_nbuckets; ++bucket)
	    {
	      Elf32_Word symndx = match->l_gnu_buckets[bucket];
	      if (symndx != 0)
		{
		  const Elf32_Word *hasharr = &match->l_gnu_chain_zero[symndx];

		  do
		    {
		      /* The hash table never references local symbols
			 so we can omit that test here.  */
		      if (symtab[symndx].st_shndx != SHN_UNDEF
#ifdef USE_TLS
			  && ELFW(ST_TYPE) (symtab[symndx].st_info) != STT_TLS
#endif
			  && DL_ADDR_SYM_MATCH (match, &symtab[symndx],
						matchsym, addr)
			  && symtab[symndx].st_name < strtabsize)
			matchsym = (ElfW(Sym) *) &symtab[symndx];

		      ++symndx;
		    }
		  while ((*hasharr++ & 1u) == 0);
		}
	    }
	}
      else
	{
	  const ElfW(Sym) *symtabend;
	  if (match->l_info[DT_HASH] != NULL)
	    symtabend = (symtab
			 + ((Elf_Symndx *) D_PTR (match, l_info[DT_HASH]))[1]);
	  else
	    /* There is no direct way to determine the number of symbols in the
	       dynamic symbol table and no hash table is present.  The ELF
	       binary is ill-formed but what shall we do?  Use the beginning of
	       the string table which generally follows the symbol table.  */
	    symtabend = (const ElfW(Sym) *) strtab;

	  for (; (void *) symtab < (void *) symtabend; ++symtab)
	    if ((ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL
		 || ELFW(ST_BIND) (symtab->st_info) == STB_WEAK)
#ifdef USE_TLS
		&& ELFW(ST_TYPE) (symtab->st_info) != STT_TLS
#endif
		&& symtab->st_shndx != SHN_UNDEF
		&& DL_ADDR_SYM_MATCH (match, symtab, matchsym, addr)
		&& symtab->st_name < strtabsize)
	      matchsym = (ElfW(Sym) *) symtab;
	}

      if (mapp)
	*mapp = match;
      if (symbolp)
	*symbolp = matchsym;

      if (matchsym)
	{
	  /* We found a symbol close by.  Fill in its name and exact
	     address.  */
	  lookup_t matchl = LOOKUP_VALUE (match);

	  info->dli_sname = strtab + matchsym->st_name;
	  info->dli_saddr = DL_SYMBOL_ADDRESS (matchl, matchsym);
	}
      else
	{
	  /* No symbol matches.  We return only the containing object.  */
	  info->dli_sname = NULL;
	  info->dli_saddr = NULL;
	}

      result = 1;
    }

  __rtld_lock_unlock_recursive (GL(dl_load_lock));

  return result;
}
libc_hidden_def (_dl_addr)