summary refs log tree commit diff
path: root/db/hash/hash_page.c
blob: e1dfe6b8d62ed29aa230526f5f945eedf0c41bd0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/*-
 * Copyright (c) 1990, 1993, 1994
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Margo Seltzer.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
#endif /* LIBC_SCCS and not lint */

/*
 * PACKAGE:  hashing
 *
 * DESCRIPTION:
 *	Page manipulation for hashing package.
 *
 * ROUTINES:
 *
 * External
 *	__get_page
 *	__add_ovflpage
 * Internal
 *	overflow_page
 *	open_temp
 */

#include <sys/types.h>

#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifdef DEBUG
#include <assert.h>
#endif

#include <db.h>
#include "hash.h"
#include "page.h"
#include "extern.h"

static u_int32_t	*fetch_bitmap __P((HTAB *, int));
static u_int32_t	 first_free __P((u_int32_t));
static int	 open_temp __P((HTAB *));
static u_int16_t	 overflow_page __P((HTAB *));
static void	 putpair __P((char *, const DBT *, const DBT *));
static void	 squeeze_key __P((u_int16_t *, const DBT *, const DBT *));
static int	 ugly_split
		    __P((HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int));

#define	PAGE_INIT(P) { \
	((u_int16_t *)(P))[0] = 0; \
	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
	((u_int16_t *)(P))[2] = hashp->BSIZE; \
}

/*
 * This is called AFTER we have verified that there is room on the page for
 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
 * stuff on.
 */
static void
putpair(p, key, val)
	char *p;
	const DBT *key, *val;
{
	register u_int16_t *bp, n, off;

	bp = (u_int16_t *)p;

	/* Enter the key first. */
	n = bp[0];

	off = OFFSET(bp) - key->size;
	memmove(p + off, key->data, key->size);
	bp[++n] = off;

	/* Now the data. */
	off -= val->size;
	memmove(p + off, val->data, val->size);
	bp[++n] = off;

	/* Adjust page info. */
	bp[0] = n;
	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
	bp[n + 2] = off;
}

/*
 * Returns:
 *	 0 OK
 *	-1 error
 */
extern int
__delpair(hashp, bufp, ndx)
	HTAB *hashp;
	BUFHEAD *bufp;
	register int ndx;
{
	register u_int16_t *bp, newoff;
	register int n;
	u_int16_t pairlen;

	bp = (u_int16_t *)bufp->page;
	n = bp[0];

	if (bp[ndx + 1] < REAL_KEY)
		return (__big_delete(hashp, bufp));
	if (ndx != 1)
		newoff = bp[ndx - 1];
	else
		newoff = hashp->BSIZE;
	pairlen = newoff - bp[ndx + 1];

	if (ndx != (n - 1)) {
		/* Hard Case -- need to shuffle keys */
		register int i;
		register char *src = bufp->page + (int)OFFSET(bp);
		register char *dst = src + (int)pairlen;
		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));

		/* Now adjust the pointers */
		for (i = ndx + 2; i <= n; i += 2) {
			if (bp[i + 1] == OVFLPAGE) {
				bp[i - 2] = bp[i];
				bp[i - 1] = bp[i + 1];
			} else {
				bp[i - 2] = bp[i] + pairlen;
				bp[i - 1] = bp[i + 1] + pairlen;
			}
		}
	}
	/* Finally adjust the page data */
	bp[n] = OFFSET(bp) + pairlen;
	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
	bp[0] = n - 2;
	hashp->NKEYS--;

	bufp->flags |= BUF_MOD;
	return (0);
}
/*
 * Returns:
 *	 0 ==> OK
 *	-1 ==> Error
 */
extern int
__split_page(hashp, obucket, nbucket)
	HTAB *hashp;
	u_int32_t obucket, nbucket;
{
	register BUFHEAD *new_bufp, *old_bufp;
	register u_int16_t *ino;
	register char *np;
	DBT key, val;
	int n, ndx, retval;
	u_int16_t copyto, diff, off, moved;
	char *op;

	copyto = (u_int16_t)hashp->BSIZE;
	off = (u_int16_t)hashp->BSIZE;
	old_bufp = __get_buf(hashp, obucket, NULL, 0);
	if (old_bufp == NULL)
		return (-1);
	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
	if (new_bufp == NULL)
		return (-1);

	old_bufp->flags |= (BUF_MOD | BUF_PIN);
	new_bufp->flags |= (BUF_MOD | BUF_PIN);

	ino = (u_int16_t *)(op = old_bufp->page);
	np = new_bufp->page;

	moved = 0;

	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
		if (ino[n + 1] < REAL_KEY) {
			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
			    (int)copyto, (int)moved);
			old_bufp->flags &= ~BUF_PIN;
			new_bufp->flags &= ~BUF_PIN;
			return (retval);

		}
		key.data = (u_char *)op + ino[n];
		key.size = off - ino[n];

		if (__call_hash(hashp, key.data, key.size) == obucket) {
			/* Don't switch page */
			diff = copyto - off;
			if (diff) {
				copyto = ino[n + 1] + diff;
				memmove(op + copyto, op + ino[n + 1],
				    off - ino[n + 1]);
				ino[ndx] = copyto + ino[n] - ino[n + 1];
				ino[ndx + 1] = copyto;
			} else
				copyto = ino[n + 1];
			ndx += 2;
		} else {
			/* Switch page */
			val.data = (u_char *)op + ino[n + 1];
			val.size = ino[n] - ino[n + 1];
			putpair(np, &key, &val);
			moved += 2;
		}

		off = ino[n + 1];
	}

	/* Now clean up the page */
	ino[0] -= moved;
	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
	OFFSET(ino) = copyto;

#ifdef DEBUG3
	(void)fprintf(stderr, "split %d/%d\n",
	    ((u_int16_t *)np)[0] / 2,
	    ((u_int16_t *)op)[0] / 2);
#endif
	/* unpin both pages */
	old_bufp->flags &= ~BUF_PIN;
	new_bufp->flags &= ~BUF_PIN;
	return (0);
}

/*
 * Called when we encounter an overflow or big key/data page during split
 * handling.  This is special cased since we have to begin checking whether
 * the key/data pairs fit on their respective pages and because we may need
 * overflow pages for both the old and new pages.
 *
 * The first page might be a page with regular key/data pairs in which case
 * we have a regular overflow condition and just need to go on to the next
 * page or it might be a big key/data pair in which case we need to fix the
 * big key/data pair.
 *
 * Returns:
 *	 0 ==> success
 *	-1 ==> failure
 */
static int
ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
	HTAB *hashp;
	u_int32_t obucket;	/* Same as __split_page. */
	BUFHEAD *old_bufp, *new_bufp;
	int copyto;	/* First byte on page which contains key/data values. */
	int moved;	/* Number of pairs moved to new page. */
{
	register BUFHEAD *bufp;	/* Buffer header for ino */
	register u_int16_t *ino;	/* Page keys come off of */
	register u_int16_t *np;	/* New page */
	register u_int16_t *op;	/* Page keys go on to if they aren't moving */

	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
	DBT key, val;
	SPLIT_RETURN ret;
	u_int16_t n, off, ov_addr, scopyto;
	char *cino;		/* Character value of ino */

	bufp = old_bufp;
	ino = (u_int16_t *)old_bufp->page;
	np = (u_int16_t *)new_bufp->page;
	op = (u_int16_t *)old_bufp->page;
	last_bfp = NULL;
	scopyto = (u_int16_t)copyto;	/* ANSI */

	n = ino[0] - 1;
	while (n < ino[0]) {
		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
			if (__big_split(hashp, old_bufp,
			    new_bufp, bufp, bufp->addr, obucket, &ret))
				return (-1);
			old_bufp = ret.oldp;
			if (!old_bufp)
				return (-1);
			op = (u_int16_t *)old_bufp->page;
			new_bufp = ret.newp;
			if (!new_bufp)
				return (-1);
			np = (u_int16_t *)new_bufp->page;
			bufp = ret.nextp;
			if (!bufp)
				return (0);
			cino = (char *)bufp->page;
			ino = (u_int16_t *)cino;
			last_bfp = ret.nextp;
		} else if (ino[n + 1] == OVFLPAGE) {
			ov_addr = ino[n];
			/*
			 * Fix up the old page -- the extra 2 are the fields
			 * which contained the overflow information.
			 */
			ino[0] -= (moved + 2);
			FREESPACE(ino) =
			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
			OFFSET(ino) = scopyto;

			bufp = __get_buf(hashp, ov_addr, bufp, 0);
			if (!bufp)
				return (-1);

			ino = (u_int16_t *)bufp->page;
			n = 1;
			scopyto = hashp->BSIZE;
			moved = 0;

			if (last_bfp)
				__free_ovflpage(hashp, last_bfp);
			last_bfp = bufp;
		}
		/* Move regular sized pairs of there are any */
		off = hashp->BSIZE;
		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
			cino = (char *)ino;
			key.data = (u_char *)cino + ino[n];
			key.size = off - ino[n];
			val.data = (u_char *)cino + ino[n + 1];
			val.size = ino[n] - ino[n + 1];
			off = ino[n + 1];

			if (__call_hash(hashp, key.data, key.size) == obucket) {
				/* Keep on old page */
				if (PAIRFITS(op, (&key), (&val)))
					putpair((char *)op, &key, &val);
				else {
					old_bufp =
					    __add_ovflpage(hashp, old_bufp);
					if (!old_bufp)
						return (-1);
					op = (u_int16_t *)old_bufp->page;
					putpair((char *)op, &key, &val);
				}
				old_bufp->flags |= BUF_MOD;
			} else {
				/* Move to new page */
				if (PAIRFITS(np, (&key), (&val)))
					putpair((char *)np, &key, &val);
				else {
					new_bufp =
					    __add_ovflpage(hashp, new_bufp);
					if (!new_bufp)
						return (-1);
					np = (u_int16_t *)new_bufp->page;
					putpair((char *)np, &key, &val);
				}
				new_bufp->flags |= BUF_MOD;
			}
		}
	}
	if (last_bfp)
		__free_ovflpage(hashp, last_bfp);
	return (0);
}

/*
 * Add the given pair to the page
 *
 * Returns:
 *	0 ==> OK
 *	1 ==> failure
 */
extern int
__addel(hashp, bufp, key, val)
	HTAB *hashp;
	BUFHEAD *bufp;
	const DBT *key, *val;
{
	register u_int16_t *bp, *sop;
	int do_expand;

	bp = (u_int16_t *)bufp->page;
	do_expand = 0;
	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
		/* Exception case */
		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
			/* This is the last page of a big key/data pair
			   and we need to add another page */
			break;
		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
			if (!bufp)
				return (-1);
			bp = (u_int16_t *)bufp->page;
		} else
			/* Try to squeeze key on this page */
			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
				squeeze_key(bp, key, val);
				return (0);
			} else {
				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
				if (!bufp)
					return (-1);
				bp = (u_int16_t *)bufp->page;
			}

	if (PAIRFITS(bp, key, val))
		putpair(bufp->page, key, val);
	else {
		do_expand = 1;
		bufp = __add_ovflpage(hashp, bufp);
		if (!bufp)
			return (-1);
		sop = (u_int16_t *)bufp->page;

		if (PAIRFITS(sop, key, val))
			putpair((char *)sop, key, val);
		else
			if (__big_insert(hashp, bufp, key, val))
				return (-1);
	}
	bufp->flags |= BUF_MOD;
	/*
	 * If the average number of keys per bucket exceeds the fill factor,
	 * expand the table.
	 */
	hashp->NKEYS++;
	if (do_expand ||
	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
		return (__expand_table(hashp));
	return (0);
}

/*
 *
 * Returns:
 *	pointer on success
 *	NULL on error
 */
extern BUFHEAD *
__add_ovflpage(hashp, bufp)
	HTAB *hashp;
	BUFHEAD *bufp;
{
	register u_int16_t *sp;
	u_int16_t ndx, ovfl_num;
#ifdef DEBUG1
	int tmp1, tmp2;
#endif
	sp = (u_int16_t *)bufp->page;

	/* Check if we are dynamically determining the fill factor */
	if (hashp->FFACTOR == DEF_FFACTOR) {
		hashp->FFACTOR = sp[0] >> 1;
		if (hashp->FFACTOR < MIN_FFACTOR)
			hashp->FFACTOR = MIN_FFACTOR;
	}
	bufp->flags |= BUF_MOD;
	ovfl_num = overflow_page(hashp);
#ifdef DEBUG1
	tmp1 = bufp->addr;
	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
#endif
	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
		return (NULL);
	bufp->ovfl->flags |= BUF_MOD;
#ifdef DEBUG1
	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
	    tmp1, tmp2, bufp->ovfl->addr);
#endif
	ndx = sp[0];
	/*
	 * Since a pair is allocated on a page only if there's room to add
	 * an overflow page, we know that the OVFL information will fit on
	 * the page.
	 */
	sp[ndx + 4] = OFFSET(sp);
	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
	sp[ndx + 1] = ovfl_num;
	sp[ndx + 2] = OVFLPAGE;
	sp[0] = ndx + 2;
#ifdef HASH_STATISTICS
	hash_overflows++;
#endif
	return (bufp->ovfl);
}

/*
 * Returns:
 *	 0 indicates SUCCESS
 *	-1 indicates FAILURE
 */
extern int
__get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
	HTAB *hashp;
	char *p;
	u_int32_t bucket;
	int is_bucket, is_disk, is_bitmap;
{
	register int fd, page, size;
	int rsize;
	u_int16_t *bp;

	fd = hashp->fp;
	size = hashp->BSIZE;

	if ((fd == -1) || !is_disk) {
		PAGE_INIT(p);
		return (0);
	}
	if (is_bucket)
		page = BUCKET_TO_PAGE(bucket);
	else
		page = OADDR_TO_PAGE(bucket);
	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
	    ((rsize = read(fd, p, size)) == -1))
		return (-1);
	bp = (u_int16_t *)p;
	if (!rsize)
		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
	else
		if (rsize != size) {
			errno = EFTYPE;
			return (-1);
		}
	if (!is_bitmap && !bp[0]) {
		PAGE_INIT(p);
	} else
		if (hashp->LORDER != BYTE_ORDER) {
			register int i, max;

			if (is_bitmap) {
				max = hashp->BSIZE >> 2; /* divide by 4 */
				for (i = 0; i < max; i++)
					M_32_SWAP(((int *)p)[i]);
			} else {
				M_16_SWAP(bp[0]);
				max = bp[0] + 2;
				for (i = 1; i <= max; i++)
					M_16_SWAP(bp[i]);
			}
		}
	return (0);
}

/*
 * Write page p to disk
 *
 * Returns:
 *	 0 ==> OK
 *	-1 ==>failure
 */
extern int
__put_page(hashp, p, bucket, is_bucket, is_bitmap)
	HTAB *hashp;
	char *p;
	u_int32_t bucket;
	int is_bucket, is_bitmap;
{
	register int fd, page, size;
	int wsize;

	size = hashp->BSIZE;
	if ((hashp->fp == -1) && open_temp(hashp))
		return (-1);
	fd = hashp->fp;

	if (hashp->LORDER != BYTE_ORDER) {
		register int i;
		register int max;

		if (is_bitmap) {
			max = hashp->BSIZE >> 2;	/* divide by 4 */
			for (i = 0; i < max; i++)
				M_32_SWAP(((int *)p)[i]);
		} else {
			max = ((u_int16_t *)p)[0] + 2;
			for (i = 0; i <= max; i++)
				M_16_SWAP(((u_int16_t *)p)[i]);
		}
	}
	if (is_bucket)
		page = BUCKET_TO_PAGE(bucket);
	else
		page = OADDR_TO_PAGE(bucket);
	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
	    ((wsize = write(fd, p, size)) == -1))
		/* Errno is set */
		return (-1);
	if (wsize != size) {
		errno = EFTYPE;
		return (-1);
	}
	return (0);
}

#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
/*
 * Initialize a new bitmap page.  Bitmap pages are left in memory
 * once they are read in.
 */
extern int
__ibitmap(hashp, pnum, nbits, ndx)
	HTAB *hashp;
	int pnum, nbits, ndx;
{
	u_int32_t *ip;
	int clearbytes, clearints;

	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
		return (1);
	hashp->nmaps++;
	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
	clearbytes = clearints << INT_TO_BYTE;
	(void)memset((char *)ip, 0, clearbytes);
	(void)memset(((char *)ip) + clearbytes, 0xFF,
	    hashp->BSIZE - clearbytes);
	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
	SETBIT(ip, 0);
	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
	hashp->mapp[ndx] = ip;
	return (0);
}

static u_int32_t
first_free(map)
	u_int32_t map;
{
	register u_int32_t i, mask;

	mask = 0x1;
	for (i = 0; i < BITS_PER_MAP; i++) {
		if (!(mask & map))
			return (i);
		mask = mask << 1;
	}
	return (i);
}

static u_int16_t
overflow_page(hashp)
	HTAB *hashp;
{
	register u_int32_t *freep;
	register int max_free, offset, splitnum;
	u_int16_t addr;
	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
#ifdef DEBUG2
	int tmp1, tmp2;
#endif
	splitnum = hashp->OVFL_POINT;
	max_free = hashp->SPARES[splitnum];

	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);

	/* Look through all the free maps to find the first free block */
	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
	for ( i = first_page; i <= free_page; i++ ) {
		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
		    !(freep = fetch_bitmap(hashp, i)))
			return (0);
		if (i == free_page)
			in_use_bits = free_bit;
		else
			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
		
		if (i == first_page) {
			bit = hashp->LAST_FREED &
			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
			j = bit / BITS_PER_MAP;
			bit = bit & ~(BITS_PER_MAP - 1);
		} else {
			bit = 0;
			j = 0;
		}
		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
			if (freep[j] != ALL_SET)
				goto found;
	}

	/* No Free Page Found */
	hashp->LAST_FREED = hashp->SPARES[splitnum];
	hashp->SPARES[splitnum]++;
	offset = hashp->SPARES[splitnum] -
	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);

#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
	if (offset > SPLITMASK) {
		if (++splitnum >= NCACHED) {
			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
			return (0);
		}
		hashp->OVFL_POINT = splitnum;
		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
		hashp->SPARES[splitnum-1]--;
		offset = 1;
	}

	/* Check if we need to allocate a new bitmap page */
	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
		free_page++;
		if (free_page >= NCACHED) {
			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
			return (0);
		}
		/*
		 * This is tricky.  The 1 indicates that you want the new page
		 * allocated with 1 clear bit.  Actually, you are going to
		 * allocate 2 pages from this map.  The first is going to be
		 * the map page, the second is the overflow page we were
		 * looking for.  The init_bitmap routine automatically, sets
		 * the first bit of itself to indicate that the bitmap itself
		 * is in use.  We would explicitly set the second bit, but
		 * don't have to if we tell init_bitmap not to leave it clear
		 * in the first place.
		 */
		if (__ibitmap(hashp,
		    (int)OADDR_OF(splitnum, offset), 1, free_page))
			return (0);
		hashp->SPARES[splitnum]++;
#ifdef DEBUG2
		free_bit = 2;
#endif
		offset++;
		if (offset > SPLITMASK) {
			if (++splitnum >= NCACHED) {
				(void)write(STDERR_FILENO, OVMSG,
				    sizeof(OVMSG) - 1);
				return (0);
			}
			hashp->OVFL_POINT = splitnum;
			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
			hashp->SPARES[splitnum-1]--;
			offset = 0;
		}
	} else {
		/*
		 * Free_bit addresses the last used bit.  Bump it to address
		 * the first available bit.
		 */
		free_bit++;
		SETBIT(freep, free_bit);
	}

	/* Calculate address of the new overflow page */
	addr = OADDR_OF(splitnum, offset);
#ifdef DEBUG2
	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
	    addr, free_bit, free_page);
#endif
	return (addr);

found:
	bit = bit + first_free(freep[j]);
	SETBIT(freep, bit);
#ifdef DEBUG2
	tmp1 = bit;
	tmp2 = i;
#endif
	/*
	 * Bits are addressed starting with 0, but overflow pages are addressed
	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
	 * it to convert it to a page number.
	 */
	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
	if (bit >= hashp->LAST_FREED)
		hashp->LAST_FREED = bit - 1;

	/* Calculate the split number for this page */
	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
	if (offset >= SPLITMASK)
		return (0);	/* Out of overflow pages */
	addr = OADDR_OF(i, offset);
#ifdef DEBUG2
	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
	    addr, tmp1, tmp2);
#endif

	/* Allocate and return the overflow page */
	return (addr);
}

/*
 * Mark this overflow page as free.
 */
extern void
__free_ovflpage(hashp, obufp)
	HTAB *hashp;
	BUFHEAD *obufp;
{
	register u_int16_t addr;
	u_int32_t *freep;
	int bit_address, free_page, free_bit;
	u_int16_t ndx;

	addr = obufp->addr;
#ifdef DEBUG1
	(void)fprintf(stderr, "Freeing %d\n", addr);
#endif
	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
	bit_address =
	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
	 if (bit_address < hashp->LAST_FREED)
		hashp->LAST_FREED = bit_address;
	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);

	if (!(freep = hashp->mapp[free_page]))
		freep = fetch_bitmap(hashp, free_page);
#ifdef DEBUG
	/*
	 * This had better never happen.  It means we tried to read a bitmap
	 * that has already had overflow pages allocated off it, and we
	 * failed to read it from the file.
	 */
	if (!freep)
		assert(0);
#endif
	CLRBIT(freep, free_bit);
#ifdef DEBUG2
	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
	    obufp->addr, free_bit, free_page);
#endif
	__reclaim_buf(hashp, obufp);
}

/*
 * Returns:
 *	 0 success
 *	-1 failure
 */
static int
open_temp(hashp)
	HTAB *hashp;
{
	sigset_t set, oset;
	static char namestr[] = "_hashXXXXXX";

	/* Block signals; make sure file goes away at process exit. */
	(void)sigfillset(&set);
	(void)sigprocmask(SIG_BLOCK, &set, &oset);
	if ((hashp->fp = mkstemp(namestr)) != -1) {
		(void)unlink(namestr);
		(void)fcntl(hashp->fp, F_SETFD, 1);
	}
	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
	return (hashp->fp != -1 ? 0 : -1);
}

/*
 * We have to know that the key will fit, but the last entry on the page is
 * an overflow pair, so we need to shift things.
 */
static void
squeeze_key(sp, key, val)
	u_int16_t *sp;
	const DBT *key, *val;
{
	register char *p;
	u_int16_t free_space, n, off, pageno;

	p = (char *)sp;
	n = sp[0];
	free_space = FREESPACE(sp);
	off = OFFSET(sp);

	pageno = sp[n - 1];
	off -= key->size;
	sp[n - 1] = off;
	memmove(p + off, key->data, key->size);
	off -= val->size;
	sp[n] = off;
	memmove(p + off, val->data, val->size);
	sp[0] = n + 2;
	sp[n + 1] = pageno;
	sp[n + 2] = OVFLPAGE;
	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
	OFFSET(sp) = off;
}

static u_int32_t *
fetch_bitmap(hashp, ndx)
	HTAB *hashp;
	int ndx;
{
	if (ndx >= hashp->nmaps)
		return (NULL);
	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
		return (NULL);
	if (__get_page(hashp,
	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
		free(hashp->mapp[ndx]);
		return (NULL);
	}
	return (hashp->mapp[ndx]);
}

#ifdef DEBUG4
int
print_chain(addr)
	int addr;
{
	BUFHEAD *bufp;
	short *bp, oaddr;

	(void)fprintf(stderr, "%d ", addr);
	bufp = __get_buf(hashp, addr, NULL, 0);
	bp = (short *)bufp->page;
	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
		((bp[0] > 2) && bp[2] < REAL_KEY))) {
		oaddr = bp[bp[0] - 1];
		(void)fprintf(stderr, "%d ", (int)oaddr);
		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
		bp = (short *)bufp->page;
	}
	(void)fprintf(stderr, "\n");
}
#endif