1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/* Skeleton for benchmark programs.
Copyright (C) 2013-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <time.h>
#include <inttypes.h>
#include "bench-timing.h"
#include "json-lib.h"
#include "bench-util.h"
#include "bench-util.c"
#define TIMESPEC_AFTER(a, b) \
(((a).tv_sec == (b).tv_sec) \
? ((a).tv_nsec > (b).tv_nsec) \
: ((a).tv_sec > (b).tv_sec))
int
main (int argc, char **argv)
{
unsigned long i, k;
struct timespec runtime;
timing_t start, end;
bool detailed = false;
json_ctx_t json_ctx;
if (argc == 2 && !strcmp (argv[1], "-d"))
detailed = true;
bench_start ();
memset (&runtime, 0, sizeof (runtime));
unsigned long iters, res;
#ifdef BENCH_INIT
BENCH_INIT ();
#endif
TIMING_INIT (res);
iters = 1000 * res;
json_init (&json_ctx, 2, stdout);
/* Begin function. */
json_attr_object_begin (&json_ctx, FUNCNAME);
for (int v = 0; v < NUM_VARIANTS; v++)
{
/* Run for approximately DURATION seconds. */
clock_gettime (CLOCK_MONOTONIC_RAW, &runtime);
runtime.tv_sec += DURATION;
bool is_bench = strncmp (VARIANT (v), "workload-", 9) == 0;
double d_total_i = 0;
timing_t total = 0, max = 0, min = 0x7fffffffffffffff;
timing_t throughput = 0, latency = 0;
int64_t c = 0;
uint64_t cur;
BENCH_VARS;
while (1)
{
if (is_bench)
{
/* Benchmark a real trace of calls - all samples are iterated
over once before repeating. This models actual use more
accurately than repeating the same sample many times. */
TIMING_NOW (start);
for (k = 0; k < iters; k++)
for (i = 0; i < NUM_SAMPLES (v); i++)
BENCH_FUNC (v, i);
TIMING_NOW (end);
TIMING_DIFF (cur, start, end);
TIMING_ACCUM (throughput, cur);
TIMING_NOW (start);
for (k = 0; k < iters; k++)
for (i = 0; i < NUM_SAMPLES (v); i++)
BENCH_FUNC_LAT (v, i);
TIMING_NOW (end);
TIMING_DIFF (cur, start, end);
TIMING_ACCUM (latency, cur);
d_total_i += iters * NUM_SAMPLES (v);
}
else
for (i = 0; i < NUM_SAMPLES (v); i++)
{
TIMING_NOW (start);
for (k = 0; k < iters; k++)
BENCH_FUNC (v, i);
TIMING_NOW (end);
TIMING_DIFF (cur, start, end);
if (cur > max)
max = cur;
if (cur < min)
min = cur;
TIMING_ACCUM (total, cur);
/* Accumulate timings for the value. In the end we will divide
by the total iterations. */
RESULT_ACCUM (cur, v, i, c * iters, (c + 1) * iters);
d_total_i += iters;
}
c++;
struct timespec curtime;
memset (&curtime, 0, sizeof (curtime));
clock_gettime (CLOCK_MONOTONIC_RAW, &curtime);
if (TIMESPEC_AFTER (curtime, runtime))
goto done;
}
double d_total_s;
double d_iters;
done:
d_total_s = total;
d_iters = iters;
/* Begin variant. */
json_attr_object_begin (&json_ctx, VARIANT (v));
if (is_bench)
{
json_attr_double (&json_ctx, "duration", throughput + latency);
json_attr_double (&json_ctx, "iterations", 2 * d_total_i);
json_attr_double (&json_ctx, "reciprocal-throughput",
throughput / d_total_i);
json_attr_double (&json_ctx, "latency", latency / d_total_i);
json_attr_double (&json_ctx, "max-throughput",
d_total_i / throughput * 1000000000.0);
json_attr_double (&json_ctx, "min-throughput",
d_total_i / latency * 1000000000.0);
}
else
{
json_attr_double (&json_ctx, "duration", d_total_s);
json_attr_double (&json_ctx, "iterations", d_total_i);
json_attr_double (&json_ctx, "max", max / d_iters);
json_attr_double (&json_ctx, "min", min / d_iters);
json_attr_double (&json_ctx, "mean", d_total_s / d_total_i);
}
if (detailed && !is_bench)
{
json_array_begin (&json_ctx, "timings");
for (int i = 0; i < NUM_SAMPLES (v); i++)
json_element_double (&json_ctx, RESULT (v, i));
json_array_end (&json_ctx);
}
/* End variant. */
json_attr_object_end (&json_ctx);
}
/* End function. */
json_attr_object_end (&json_ctx);
return 0;
}
|