1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/* Measure memcpy performance.
Copyright (C) 2016-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#define MIN_PAGE_SIZE 131072
#define TEST_MAIN
#define TEST_NAME "memcpy"
#include "bench-string.h"
#include <assert.h>
#include "json-lib.h"
IMPL (memcpy, 1)
#define NUM_COPIES 4096
typedef struct { uint16_t size; uint16_t freq; } freq_data_t;
typedef struct { uint8_t align; uint8_t freq; } align_data_t;
#define SIZE_NUM 1024
#define SIZE_MASK (SIZE_NUM-1)
static uint8_t size_arr[SIZE_NUM];
/* Frequency data for memcpy of less than 256 bytes based on SPEC2006. */
static freq_data_t size_freq[] =
{
{ 8, 576}, {104, 94}, { 24, 78}, { 48, 58}, { 32, 48}, { 16, 46},
{ 1, 30}, { 96, 12}, { 72, 11}, {216, 11}, {192, 8}, { 12, 7},
{144, 5}, { 2, 4}, { 64, 4}, {120, 4}, { 4, 3}, { 40, 2},
{ 7, 2}, {168, 2}, {160, 2}, {128, 1}, { 3, 1}, { 9, 1},
{176, 1}, {240, 1}, { 11, 1}, { 0, 1}, { 5, 1}, { 6, 1},
{ 80, 1}, { 52, 1}, {152, 1}, { 10, 1}, { 56, 1}, { 51, 1},
{ 14, 1}, {208, 1}, { 0, 0}
};
#define ALIGN_NUM 256
#define ALIGN_MASK (ALIGN_NUM-1)
static uint8_t src_align_arr[ALIGN_NUM];
static uint8_t dst_align_arr[ALIGN_NUM];
/* Source alignment frequency for memcpy based on SPEC2006. */
static align_data_t src_align_freq[] =
{
{16, 144}, {8, 86}, {3, 23}, {1, 3}, {0, 0}
};
/* Destination alignment frequency for memcpy based on SPEC2006. */
static align_data_t dst_align_freq[] =
{
{16, 197}, {8, 30}, {3, 23}, {1, 6}, {0, 0}
};
typedef struct
{
uint16_t src;
uint16_t dst;
uint16_t len;
} copy_t;
static copy_t copy[NUM_COPIES];
typedef char *(*proto_t) (char *, const char *, size_t);
static void
init_copy_distribution (void)
{
int i, j, freq, size, n;
for (n = i = 0; (freq = size_freq[i].freq) != 0; i++)
for (j = 0, size = size_freq[i].size; j < freq; j++)
size_arr[n++] = size;
assert (n == SIZE_NUM);
for (n = i = 0; (freq = src_align_freq[i].freq) != 0; i++)
for (j = 0, size = src_align_freq[i].align; j < freq; j++)
src_align_arr[n++] = size - 1;
assert (n == ALIGN_NUM);
for (n = i = 0; (freq = dst_align_freq[i].freq) != 0; i++)
for (j = 0, size = dst_align_freq[i].align; j < freq; j++)
dst_align_arr[n++] = size - 1;
assert (n == ALIGN_NUM);
}
static void
do_one_test (json_ctx_t *json_ctx, impl_t *impl, char *dst, char *src,
copy_t *copy, size_t n)
{
timing_t start, stop, cur;
size_t iters = INNER_LOOP_ITERS_MEDIUM;
TIMING_NOW (start);
for (int i = 0; i < iters; ++i)
for (int j = 0; j < n; j++)
CALL (impl, dst + copy[j].dst, src + copy[j].src, copy[j].len);
TIMING_NOW (stop);
TIMING_DIFF (cur, start, stop);
json_element_double (json_ctx, (double) cur / (double) iters);
}
static void
do_test (json_ctx_t *json_ctx, size_t max_size)
{
for (int i = 0; i < max_size; i++)
buf1[i] = i * 3;
/* Create a random set of copies with the given size and alignment
distributions. */
for (int i = 0; i < NUM_COPIES; i++)
{
copy[i].dst = (rand () & (max_size - 1)) | 1;
copy[i].dst &= ~dst_align_arr[rand () & ALIGN_MASK];
copy[i].src = (rand () & (max_size - 1)) | 3;
copy[i].src &= ~src_align_arr[rand () & ALIGN_MASK];
copy[i].len = size_arr[rand () & SIZE_MASK];
}
json_element_object_begin (json_ctx);
json_attr_uint (json_ctx, "max-size", (double) max_size);
json_array_begin (json_ctx, "timings");
FOR_EACH_IMPL (impl, 0)
do_one_test (json_ctx, impl, (char *) buf2, (char *) buf1, copy, NUM_COPIES);
json_array_end (json_ctx);
json_element_object_end (json_ctx);
}
int
test_main (void)
{
json_ctx_t json_ctx;
test_init ();
init_copy_distribution ();
json_init (&json_ctx, 0, stdout);
json_document_begin (&json_ctx);
json_attr_string (&json_ctx, "timing_type", TIMING_TYPE);
json_attr_object_begin (&json_ctx, "functions");
json_attr_object_begin (&json_ctx, TEST_NAME);
json_attr_string (&json_ctx, "bench-variant", "random");
json_array_begin (&json_ctx, "ifuncs");
FOR_EACH_IMPL (impl, 0)
json_element_string (&json_ctx, impl->name);
json_array_end (&json_ctx);
json_array_begin (&json_ctx, "results");
for (int i = 4; i <= 64; i = i * 2)
do_test (&json_ctx, i * 1024);
json_array_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_attr_object_end (&json_ctx);
json_document_end (&json_ctx);
return ret;
}
#include <support/test-driver.c>
|