about summary refs log tree commit diff
path: root/REORG.TODO/sysdeps/ia64/fpu/libm_sincosl.S
blob: 7fe92c549c4e4ed5be011227aadfed4a6d57a67f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
.file "libm_sincosl.s"


// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
// 05/13/02 Initial version of sincosl (based on libm's sinl and cosl)
// 02/10/03 Reordered header: .section, .global, .proc, .align;
//          used data8 for long double table values
// 10/13/03 Corrected .file name
// 02/11/04 cisl is moved to the separate file.
// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
//
//*********************************************************************
//
// Function:   Combined sincosl routine with 3 different API's
//
// API's
//==============================================================
// 1) void sincosl(long double, long double*s, long double*c)
// 2) __libm_sincosl - internal LIBM function, that accepts
//    argument in f8 and returns cosine through f8, sine through f9
//
//
//*********************************************************************
//
// Resources Used:
//
//    Floating-Point Registers: f8 (Input x and cosl return value),
//                              f9 (sinl returned)
//                              f32-f121
//
//    General Purpose Registers:
//      r32-r61
//
//    Predicate Registers:      p6-p15
//
//*********************************************************************
//
//  IEEE Special Conditions:
//
//    Denormal  fault raised on denormal inputs
//    Overflow exceptions do not occur
//    Underflow exceptions raised when appropriate for sincosl
//    (No specialized error handling for this routine)
//    Inexact raised when appropriate by algorithm
//
//    sincosl(SNaN) = QNaN, QNaN
//    sincosl(QNaN) = QNaN, QNaN
//    sincosl(inf)  = QNaN, QNaN
//    sincosl(+/-0) = +/-0, 1
//
//*********************************************************************
//
//  Mathematical Description
//  ========================
//
//  The computation of FSIN and FCOS performed in parallel.
//
//  Arg = N pi/2 + alpha, |alpha| <= pi/4.
//
//  cosl( Arg ) = sinl( (N+1) pi/2 + alpha ),
//
//  therefore, the code for computing sine will produce cosine as long
//  as 1 is added to N immediately after the argument reduction
//  process.
//
//  Let M = N if sine
//      N+1 if cosine.
//
//  Now, given
//
//  Arg = M pi/2  + alpha, |alpha| <= pi/4,
//
//  let I = M mod 4, or I be the two lsb of M when M is represented
//  as 2's complement. I = [i_0 i_1]. Then
//
//  sinl( Arg ) = (-1)^i_0  sinl( alpha ) if i_1 = 0,
//             = (-1)^i_0  cosl( alpha )     if i_1 = 1.
//
//  For example:
//       if M = -1, I = 11
//         sin ((-pi/2 + alpha) = (-1) cos (alpha)
//       if M = 0, I = 00
//         sin (alpha) = sin (alpha)
//       if M = 1, I = 01
//         sin (pi/2 + alpha) = cos (alpha)
//       if M = 2, I = 10
//         sin (pi + alpha) = (-1) sin (alpha)
//       if M = 3, I = 11
//         sin ((3/2)pi + alpha) = (-1) cos (alpha)
//
//  The value of alpha is obtained by argument reduction and
//  represented by two working precision numbers r and c where
//
//  alpha =  r  +  c     accurately.
//
//  The reduction method is described in a previous write up.
//  The argument reduction scheme identifies 4 cases. For Cases 2
//  and 4, because |alpha| is small, sinl(r+c) and cosl(r+c) can be
//  computed very easily by 2 or 3 terms of the Taylor series
//  expansion as follows:
//
//  Case 2:
//  -------
//
//  sinl(r + c) = r + c - r^3/6 accurately
//  cosl(r + c) = 1 - 2^(-67) accurately
//
//  Case 4:
//  -------
//
//  sinl(r + c) = r + c - r^3/6 + r^5/120 accurately
//  cosl(r + c) = 1 - r^2/2 + r^4/24    accurately
//
//  The only cases left are Cases 1 and 3 of the argument reduction
//  procedure. These two cases will be merged since after the
//  argument is reduced in either cases, we have the reduced argument
//  represented as r + c and that the magnitude |r + c| is not small
//  enough to allow the usage of a very short approximation.
//
//  The required calculation is either
//
//  sinl(r + c)  =  sinl(r)  +  correction,  or
//  cosl(r + c)  =  cosl(r)  +  correction.
//
//  Specifically,
//
//  sinl(r + c) = sinl(r) + c sin'(r) + O(c^2)
//       = sinl(r) + c cos (r) + O(c^2)
//       = sinl(r) + c(1 - r^2/2)  accurately.
//  Similarly,
//
//  cosl(r + c) = cosl(r) - c sinl(r) + O(c^2)
//       = cosl(r) - c(r - r^3/6)  accurately.
//
//  We therefore concentrate on accurately calculating sinl(r) and
//  cosl(r) for a working-precision number r, |r| <= pi/4 to within
//  0.1% or so.
//
//  The greatest challenge of this task is that the second terms of
//  the Taylor series
//
//  r - r^3/3! + r^r/5! - ...
//
//  and
//
//  1 - r^2/2! + r^4/4! - ...
//
//  are not very small when |r| is close to pi/4 and the rounding
//  errors will be a concern if simple polynomial accumulation is
//  used. When |r| < 2^-3, however, the second terms will be small
//  enough (6 bits or so of right shift) that a normal Horner
//  recurrence suffices. Hence there are two cases that we consider
//  in the accurate computation of sinl(r) and cosl(r), |r| <= pi/4.
//
//  Case small_r: |r| < 2^(-3)
//  --------------------------
//
//  Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
//  we have
//
//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
//     = (-1)^i_0 * cosl(r + c)   if i_1 = 1
//
//  can be accurately approximated by
//
//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c]  if i_1 = 0
//           = (-1)^i_0 * [cosl(r) - c*r] if i_1 = 1
//
//  because |r| is small and thus the second terms in the correction
//  are unneccessary.
//
//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
//  moderate lengths.
//
//  sinl(r) =  r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
//  cosl(r) =  1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
//
//  We can make use of predicates to selectively calculate
//  sinl(r) or cosl(r) based on i_1.
//
//  Case normal_r: 2^(-3) <= |r| <= pi/4
//  ------------------------------------
//
//  This case is more likely than the previous one if one considers
//  r to be uniformly distributed in [-pi/4 pi/4]. Again,
//
//  sinl(Arg) = (-1)^i_0 * sinl(r + c)  if i_1 = 0
//           = (-1)^i_0 * cosl(r + c)   if i_1 = 1.
//
//  Because |r| is now larger, we need one extra term in the
//  correction. sinl(Arg) can be accurately approximated by
//
//  sinl(Arg) = (-1)^i_0 * [sinl(r) + c(1-r^2/2)]      if i_1 = 0
//           = (-1)^i_0 * [cosl(r) - c*r*(1 - r^2/6)]    i_1 = 1.
//
//  Finally, sinl(r) and cosl(r) are approximated by polynomials of
//  moderate lengths.
//
//  sinl(r) =  r + PP_1_hi r^3 + PP_1_lo r^3 +
//                PP_2 r^5 + ... + PP_8 r^17
//
//  cosl(r) =  1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
//
//  where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
//  The crux in accurate computation is to calculate
//
//  r + PP_1_hi r^3   or  1 + QQ_1 r^2
//
//  accurately as two pieces: U_hi and U_lo. The way to achieve this
//  is to obtain r_hi as a 10 sig. bit number that approximates r to
//  roughly 8 bits or so of accuracy. (One convenient way is
//
//  r_hi := frcpa( frcpa( r ) ).)
//
//  This way,
//
//  r + PP_1_hi r^3 =  r + PP_1_hi r_hi^3 +
//                          PP_1_hi (r^3 - r_hi^3)
//            =  [r + PP_1_hi r_hi^3]  +
//         [PP_1_hi (r - r_hi)
//            (r^2 + r_hi r + r_hi^2) ]
//            =  U_hi  +  U_lo
//
//  Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
//  PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
//  exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
//  and that there is no more than 8 bit shift off between r and
//  PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
//  calculated without any error. Finally, the fact that
//
//  |U_lo| <= 2^(-8) |U_hi|
//
//  says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
//  8 extra bits of accuracy.
//
//  Similarly,
//
//  1 + QQ_1 r^2  =  [1 + QQ_1 r_hi^2]  +
//                      [QQ_1 (r - r_hi)(r + r_hi)]
//          =  U_hi  +  U_lo.
//
//  Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
//
//  If i_1 = 0, then
//
//    U_hi := r + PP_1_hi * r_hi^3
//    U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
//    poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
//    correction := c * ( 1 + C_1 r^2 )
//
//  Else ...i_1 = 1
//
//    U_hi := 1 + QQ_1 * r_hi * r_hi
//    U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
//    poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
//    correction := -c * r * (1 + S_1 * r^2)
//
//  End
//
//  Finally,
//
//  V := poly + ( U_lo + correction )
//
//                 /    U_hi  +  V         if i_0 = 0
//  result := |
//                 \  (-U_hi) -  V         if i_0 = 1
//
//  It is important that in the last step, negation of U_hi is
//  performed prior to the subtraction which is to be performed in
//  the user-set rounding mode.
//
//
//  Algorithmic Description
//  =======================
//
//  The argument reduction algorithm shares the same code between FSIN and FCOS.
//  The argument reduction description given
//  previously is repeated below.
//
//
//  Step 0. Initialization.
//
//  Step 1. Check for exceptional and special cases.
//
//   * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
//     handling.
//   * If |Arg| < 2^24, go to Step 2 for reduction of moderate
//     arguments. This is the most likely case.
//   * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
//     arguments.
//   * If |Arg| >= 2^63, go to Step 10 for special handling.
//
//  Step 2. Reduction of moderate arguments.
//
//  If |Arg| < pi/4   ...quick branch
//     N_fix := N_inc (integer)
//     r     := Arg
//     c     := 0.0
//     Branch to Step 4, Case_1_complete
//  Else    ...cf. argument reduction
//     N     := Arg * two_by_PI (fp)
//     N_fix := fcvt.fx( N )  (int)
//     N     := fcvt.xf( N_fix )
//     N_fix := N_fix + N_inc
//     s     := Arg - N * P_1 (first piece of pi/2)
//     w     := -N * P_2  (second piece of pi/2)
//
//     If |s| >= 2^(-33)
//        go to Step 3, Case_1_reduce
//     Else
//        go to Step 7, Case_2_reduce
//     Endif
//  Endif
//
//  Step 3. Case_1_reduce.
//
//  r := s + w
//  c := (s - r) + w  ...observe order
//
//  Step 4. Case_1_complete
//
//  ...At this point, the reduced argument alpha is
//  ...accurately represented as r + c.
//  If |r| < 2^(-3), go to Step 6, small_r.
//
//  Step 5. Normal_r.
//
//  Let [i_0 i_1] by the 2 lsb of N_fix.
//  FR_rsq  := r * r
//  r_hi := frcpa( frcpa( r ) )
//  r_lo := r - r_hi
//
//  If i_1 = 0, then
//    poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
//    U_hi := r + PP_1_hi*r_hi*r_hi*r_hi  ...any order
//    U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
//    correction := c + c*C_1*FR_rsq    ...any order
//  Else
//    poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
//    U_hi := 1 + QQ_1 * r_hi * r_hi    ...any order
//    U_lo := QQ_1 * r_lo * (r + r_hi)
//    correction := -c*(r + S_1*FR_rsq*r) ...any order
//  Endif
//
//  V := poly + (U_lo + correction) ...observe order
//
//  result := (i_0 == 0?   1.0 : -1.0)
//
//  Last instruction in user-set rounding mode
//
//  result := (i_0 == 0?   result*U_hi + V :
//                        result*U_hi - V)
//
//  Return
//
//  Step 6. Small_r.
//
//  ...Use flush to zero mode without causing exception
//    Let [i_0 i_1] be the two lsb of N_fix.
//
//  FR_rsq := r * r
//
//  If i_1 = 0 then
//     z := FR_rsq*FR_rsq; z := FR_rsq*z *r
//     poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
//     poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
//     correction := c
//     result := r
//  Else
//     z := FR_rsq*FR_rsq; z := FR_rsq*z
//     poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
//     poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
//     correction := -c*r
//     result := 1
//  Endif
//
//  poly := poly_hi + (z * poly_lo + correction)
//
//  If i_0 = 1, result := -result
//
//  Last operation. Perform in user-set rounding mode
//
//  result := (i_0 == 0?     result + poly :
//                          result - poly )
//  Return
//
//  Step 7. Case_2_reduce.
//
//  ...Refer to the write up for argument reduction for
//  ...rationale. The reduction algorithm below is taken from
//  ...argument reduction description and integrated this.
//
//  w := N*P_3
//  U_1 := N*P_2 + w    ...FMA
//  U_2 := (N*P_2 - U_1) + w  ...2 FMA
//  ...U_1 + U_2 is  N*(P_2+P_3) accurately
//
//  r := s - U_1
//  c := ( (s - r) - U_1 ) - U_2
//
//  ...The mathematical sum r + c approximates the reduced
//  ...argument accurately. Note that although compared to
//  ...Case 1, this case requires much more work to reduce
//  ...the argument, the subsequent calculation needed for
//  ...any of the trigonometric function is very little because
//  ...|alpha| < 1.01*2^(-33) and thus two terms of the
//  ...Taylor series expansion suffices.
//
//  If i_1 = 0 then
//     poly := c + S_1 * r * r * r  ...any order
//     result := r
//  Else
//     poly := -2^(-67)
//     result := 1.0
//  Endif
//
//  If i_0 = 1, result := -result
//
//  Last operation. Perform in user-set rounding mode
//
//  result := (i_0 == 0?     result + poly :
//                           result - poly )
//
//  Return
//
//
//  Step 8. Pre-reduction of large arguments.
//
//  ...Again, the following reduction procedure was described
//  ...in the separate write up for argument reduction, which
//  ...is tightly integrated here.

//  N_0 := Arg * Inv_P_0
//  N_0_fix := fcvt.fx( N_0 )
//  N_0 := fcvt.xf( N_0_fix)

//  Arg' := Arg - N_0 * P_0
//  w := N_0 * d_1
//  N := Arg' * two_by_PI
//  N_fix := fcvt.fx( N )
//  N := fcvt.xf( N_fix )
//  N_fix := N_fix + N_inc
//
//  s := Arg' - N * P_1
//  w := w - N * P_2
//
//  If |s| >= 2^(-14)
//     go to Step 3
//  Else
//     go to Step 9
//  Endif
//
//  Step 9. Case_4_reduce.
//
//    ...first obtain N_0*d_1 and -N*P_2 accurately
//   U_hi := N_0 * d_1    V_hi := -N*P_2
//   U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
//
//   ...compute the contribution from N_0*d_1 and -N*P_3
//   w := -N*P_3
//   w := w + N_0*d_2
//   t := U_lo + V_lo + w   ...any order
//
//   ...at this point, the mathematical value
//   ...s + U_hi + V_hi  + t approximates the true reduced argument
//   ...accurately. Just need to compute this accurately.
//
//   ...Calculate U_hi + V_hi accurately:
//   A := U_hi + V_hi
//   if |U_hi| >= |V_hi| then
//      a := (U_hi - A) + V_hi
//   else
//      a := (V_hi - A) + U_hi
//   endif
//   ...order in computing "a" must be observed. This branch is
//   ...best implemented by predicates.
//   ...A + a  is U_hi + V_hi accurately. Moreover, "a" is
//   ...much smaller than A: |a| <= (1/2)ulp(A).
//
//   ...Just need to calculate   s + A + a + t
//   C_hi := s + A    t := t + a
//   C_lo := (s - C_hi) + A
//   C_lo := C_lo + t
//
//   ...Final steps for reduction
//   r := C_hi + C_lo
//   c := (C_hi - r) + C_lo
//
//   ...At this point, we have r and c
//   ...And all we need is a couple of terms of the corresponding
//   ...Taylor series.
//
//   If i_1 = 0
//      poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
//      result := r
//   Else
//      poly := FR_rsq*(C_1 + FR_rsq*C_2)
//      result := 1
//   Endif
//
//   If i_0 = 1, result := -result
//
//   Last operation. Perform in user-set rounding mode
//
//   result := (i_0 == 0?     result + poly :
//                            result - poly )
//   Return
//
//   Large Arguments: For arguments above 2**63, a Payne-Hanek
//   style argument reduction is used and pi_by_2 reduce is called.
//


RODATA
.align 64

LOCAL_OBJECT_START(FSINCOSL_CONSTANTS)

sincosl_table_p:
//data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
//data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
//data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
//data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
//data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
//data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
//data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
data8 0xA2F9836E4E44152A, 0x00003FFE // Inv_pi_by_2
data8 0xC84D32B0CE81B9F1, 0x00004016 // P_0
data8 0xC90FDAA22168C235, 0x00003FFF // P_1
data8 0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
data8 0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
data8 0x8D848E89DBD171A1, 0x0000BFBF // d_1
data8 0xD5394C3618A66F8E, 0x0000BF7C // d_2
LOCAL_OBJECT_END(FSINCOSL_CONSTANTS)

LOCAL_OBJECT_START(sincosl_table_d)
//data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
//data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
data8 0xC90FDAA22168C234, 0x00003FFE // pi_by_4
data8 0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
data4 0x3E000000, 0xBE000000         // 2^-3 and -2^-3
data4 0x2F000000, 0xAF000000         // 2^-33 and -2^-33
data4 0x9E000000, 0x00000000         // -2^-67
data4 0x00000000, 0x00000000         // pad
LOCAL_OBJECT_END(sincosl_table_d)

LOCAL_OBJECT_START(sincosl_table_pp)
//data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
//data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
//data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
//data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
//data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
//data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
//data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
//data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
//data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
data8 0xCC8ABEBCA21C0BC9, 0x00003FCE // PP_8
data8 0xD7468A05720221DA, 0x0000BFD6 // PP_7
data8 0xB092382F640AD517, 0x00003FDE // PP_6
data8 0xD7322B47D1EB75A4, 0x0000BFE5 // PP_5
data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
data8 0xAAAA000000000000, 0x0000BFFC // PP_1_hi
data8 0xB8EF1D2ABAF69EEA, 0x00003FEC // PP_4
data8 0xD00D00D00D03BB69, 0x0000BFF2 // PP_3
data8 0x8888888888888962, 0x00003FF8 // PP_2
data8 0xAAAAAAAAAAAB0000, 0x0000BFEC // PP_1_lo
LOCAL_OBJECT_END(sincosl_table_pp)

LOCAL_OBJECT_START(sincosl_table_qq)
//data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2 // QQ_8
//data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA // QQ_7
//data4 0x9C716658, 0x8F76C650, 0x00003FE2 // QQ_6
//data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9 // QQ_5
//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC // S_1
//data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
//data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
//data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
//data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
data8 0xD56232EFC2B0FE52, 0x00003FD2 // QQ_8
data8 0xC9C99ABA2B48DCA6, 0x0000BFDA // QQ_7
data8 0x8F76C6509C716658, 0x00003FE2 // QQ_6
data8 0x93F27DBAFDA8D0FC, 0x0000BFE9 // QQ_5
data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
data8 0x8000000000000000, 0x0000BFFE // QQ_1
data8 0xD00D00D00C6E5041, 0x00003FEF // QQ_4
data8 0xB60B60B60B607F60, 0x0000BFF5 // QQ_3
data8 0xAAAAAAAAAAAAAA9B, 0x00003FFA // QQ_2
LOCAL_OBJECT_END(sincosl_table_qq)

LOCAL_OBJECT_START(sincosl_table_c)
//data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
//data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
//data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
//data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
//data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
data8 0xFFFFFFFFFFFFFFFE, 0x0000BFFD // C_1
data8 0xAAAAAAAAAAAA719F, 0x00003FFA // C_2
data8 0xB60B60B60356F994, 0x0000BFF5 // C_3
data8 0xD00CFFD5B2385EA9, 0x00003FEF // C_4
data8 0x93E4BD18292A14CD, 0x0000BFE9 // C_5
LOCAL_OBJECT_END(sincosl_table_c)

LOCAL_OBJECT_START(sincosl_table_s)
//data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
//data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
//data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
//data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
//data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
data8 0xAAAAAAAAAAAAAAAA, 0x0000BFFC // S_1
data8 0x88888888888868DB, 0x00003FF8 // S_2
data8 0xD00D00D0055EFD4B, 0x0000BFF2 // S_3
data8 0xB8EF1C5D839730B9, 0x00003FEC // S_4
data8 0xD71EA3A4E5B3F492, 0x0000BFE5 // S_5
data4 0x38800000, 0xB8800000         // two**-14 and -two**-14
LOCAL_OBJECT_END(sincosl_table_s)

FR_Input_X        = f8
FR_Result         = f8
FR_ResultS        = f9
FR_ResultC        = f8
FR_r              = f8
FR_c              = f9

FR_norm_x         = f9
FR_inv_pi_2to63   = f10
FR_rshf_2to64     = f11
FR_2tom64         = f12
FR_rshf           = f13
FR_N_float_signif = f14
FR_abs_x          = f15

FR_r6             = f32
FR_r7             = f33
FR_Pi_by_4        = f34
FR_Two_to_M14     = f35
FR_Neg_Two_to_M14 = f36
FR_Two_to_M33     = f37
FR_Neg_Two_to_M33 = f38
FR_Neg_Two_to_M67 = f39
FR_Inv_pi_by_2    = f40
FR_N_float        = f41
FR_N_fix          = f42
FR_P_1            = f43
FR_P_2            = f44
FR_P_3            = f45
FR_s              = f46
FR_w              = f47
FR_Z              = f50
FR_A              = f51
FR_a              = f52
FR_t              = f53
FR_U_1            = f54
FR_U_2            = f55
FR_C_1            = f56
FR_C_2            = f57
FR_C_3            = f58
FR_C_4            = f59
FR_C_5            = f60
FR_S_1            = f61
FR_S_2            = f62
FR_S_3            = f63
FR_S_4            = f64
FR_S_5            = f65
FR_r_hi           = f68
FR_r_lo           = f69
FR_rsq            = f70
FR_r_cubed        = f71
FR_C_hi           = f72
FR_N_0            = f73
FR_d_1            = f74
FR_V_hi           = f75
FR_V_lo           = f76
FR_U_hi           = f77
FR_U_lo           = f78
FR_U_hiabs        = f79
FR_V_hiabs        = f80
FR_PP_8           = f81
FR_QQ_8           = f101
FR_PP_7           = f82
FR_QQ_7           = f102
FR_PP_6           = f83
FR_QQ_6           = f103
FR_PP_5           = f84
FR_QQ_5           = f104
FR_PP_4           = f85
FR_QQ_4           = f105
FR_PP_3           = f86
FR_QQ_3           = f106
FR_PP_2           = f87
FR_QQ_2           = f107
FR_QQ_1           = f108
FR_r_hi_sq        = f88
FR_N_0_fix        = f89
FR_Inv_P_0        = f90
FR_d_2            = f93
FR_P_0            = f95
FR_C_lo           = f96
FR_PP_1           = f97
FR_PP_1_lo        = f98
FR_ArgPrime       = f99
FR_inexact        = f100

FR_Neg_Two_to_M3  = f109
FR_Two_to_M3      = f110

FR_poly_hiS       = f66
FR_poly_hiC       = f112

FR_poly_loS       = f67
FR_poly_loC       = f113

FR_polyS          = f92
FR_polyC          = f114

FR_cS             = FR_c
FR_cC             = f115

FR_corrS          = f91
FR_corrC          = f116

FR_U_hiC          = f117
FR_U_loC          = f118

FR_VS             = f75
FR_VC             = f119

FR_FirstS         = f120
FR_FirstC         = f121

FR_U_hiS          = FR_U_hi
FR_U_loS          = FR_U_lo

FR_Tmp            = f94




sincos_pResSin = r34
sincos_pResCos = r35

GR_exp_m2_to_m3= r36
GR_N_Inc       = r37
GR_Cis         = r38
GR_signexp_x   = r40
GR_exp_x       = r40
GR_exp_mask    = r41
GR_exp_2_to_63 = r42
GR_exp_2_to_m3 = r43
GR_exp_2_to_24 = r44

GR_N_SignS     = r45
GR_N_SignC     = r46
GR_N_SinCos    = r47

GR_sig_inv_pi  = r48
GR_rshf_2to64  = r49
GR_exp_2tom64  = r50
GR_rshf        = r51
GR_ad_p        = r52
GR_ad_d        = r53
GR_ad_pp       = r54
GR_ad_qq       = r55
GR_ad_c        = r56
GR_ad_s        = r57
GR_ad_ce       = r58
GR_ad_se       = r59
GR_ad_m14      = r60
GR_ad_s1       = r61

// For unwind support
GR_SAVE_B0     = r39
GR_SAVE_GP     = r40
GR_SAVE_PFS    = r41


.section .text

GLOBAL_IEEE754_ENTRY(sincosl)
{ .mlx  ///////////////////////////// 1 /////////////////
      alloc r32 = ar.pfs,3,27,2,0
      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
      mov GR_N_Inc = 0x0
      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
};;

{ .mfi ///////////////////////////// 2 /////////////////
      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
}
{ .mfb
      mov GR_Cis = 0x0
      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
    br.cond.sptk _COMMON_SINCOSL
};;
GLOBAL_IEEE754_END(sincosl)

GLOBAL_LIBM_ENTRY(__libm_sincosl)
{ .mlx  ///////////////////////////// 1 /////////////////
      alloc r32 = ar.pfs,3,27,2,0
      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
      mov GR_N_Inc = 0x0
      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
};;

{ .mfi ///////////////////////////// 2 /////////////////
      addl           GR_ad_p   = @ltoff(FSINCOSL_CONSTANTS#), gp
      fclass.m p6, p0 =  FR_Input_X, 0x1E3 // Test x natval, nan, inf
      mov GR_exp_2_to_m3 = 0xffff - 3      // Exponent of 2^-3
}
{ .mfb
      mov GR_Cis = 0x1
      fnorm.s1 FR_norm_x = FR_Input_X      // Normalize x
      nop.b 0
};;

_COMMON_SINCOSL:
{ .mfi ///////////////////////////// 3 /////////////////
      setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
      nop.f 0
      mov GR_exp_2tom64 = 0xffff - 64      // Scaling constant to compute N
}
{ .mlx
      setf.d FR_rshf_2to64 = GR_rshf_2to64    // Form const 1.1000 * 2^(63+64)
      movl GR_rshf = 0x43e8000000000000       // Form const 1.1000 * 2^63
};;

{ .mfi ///////////////////////////// 4 /////////////////
      ld8 GR_ad_p = [GR_ad_p]              // Point to Inv_pi_by_2
      fclass.m p7, p0 = FR_Input_X, 0x0b   // Test x denormal
      nop.i 0
};;

{ .mfi    ///////////////////////////// 5 /////////////////
      getf.exp GR_signexp_x = FR_Input_X   // Get sign and exponent of x
      fclass.m p10, p0 = FR_Input_X, 0x007 // Test x zero
      nop.i 0
}
{ .mib
      mov GR_exp_mask = 0x1ffff            // Exponent mask
      nop.i 0
(p6)  br.cond.spnt SINCOSL_SPECIAL         // Branch if x natval, nan, inf
};;

{ .mfi ///////////////////////////// 6 /////////////////
      setf.exp FR_2tom64 = GR_exp_2tom64   // Form 2^-64 for scaling N_float
      nop.f 0
      add GR_ad_d = 0x70, GR_ad_p          // Point to constant table d
}
{ .mib
      setf.d FR_rshf = GR_rshf         // Form right shift const 1.1000 * 2^63
      mov  GR_exp_m2_to_m3 = 0x2fffc       // Form -(2^-3)
(p7)  br.cond.spnt SINCOSL_DENORMAL        // Branch if x denormal
};;

SINCOSL_COMMON2:
{ .mfi ///////////////////////////// 7 /////////////////
      and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
      fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test x unsupported type
      mov GR_exp_2_to_63 = 0xffff + 63     // Exponent of 2^63
}
{ .mib
      add GR_ad_pp = 0x40, GR_ad_d         // Point to constant table pp
      mov GR_exp_2_to_24 = 0xffff + 24     // Exponent of 2^24
(p10) br.cond.spnt SINCOSL_ZERO            // Branch if x zero
};;

{ .mfi ///////////////////////////// 8 /////////////////
      ldfe FR_Inv_pi_by_2 = [GR_ad_p], 16  // Load 2/pi
      fcmp.eq.s0 p15, p0 = FR_Input_X, f0  // Dummy to set denormal
      add GR_ad_qq = 0xa0, GR_ad_pp        // Point to constant table qq
}
{ .mfi
      ldfe FR_Pi_by_4 = [GR_ad_d], 16      // Load pi/4 for range test
      nop.f 0
      cmp.ge p10,p0 = GR_exp_x, GR_exp_2_to_63   // Is |x| >= 2^63
};;

{ .mfi ///////////////////////////// 9 /////////////////
      ldfe FR_P_0 = [GR_ad_p], 16          // Load P_0 for pi/4 <= |x| < 2^63
      fmerge.s FR_abs_x = f1, FR_norm_x    // |x|
      add GR_ad_c = 0x90, GR_ad_qq         // Point to constant table c
}
{ .mfi
      ldfe FR_Inv_P_0 = [GR_ad_d], 16      // Load 1/P_0 for pi/4 <= |x| < 2^63
      nop.f 0
      cmp.ge p7,p0 = GR_exp_x, GR_exp_2_to_24   // Is |x| >= 2^24
};;

{ .mfi ///////////////////////////// 10 /////////////////
      ldfe FR_P_1 = [GR_ad_p], 16          // Load P_1 for pi/4 <= |x| < 2^63
      nop.f 0
      add GR_ad_s = 0x50, GR_ad_c          // Point to constant table s
}
{ .mfi
      ldfe FR_PP_8 = [GR_ad_pp], 16        // Load PP_8 for 2^-3 < |r| < pi/4
      nop.f 0
      nop.i 0
};;

{ .mfi ///////////////////////////// 11 /////////////////
      ldfe FR_P_2 = [GR_ad_p], 16          // Load P_2 for pi/4 <= |x| < 2^63
      nop.f 0
      add GR_ad_ce = 0x40, GR_ad_c         // Point to end of constant table c
}
{ .mfi
      ldfe FR_QQ_8 = [GR_ad_qq], 16        // Load QQ_8 for 2^-3 < |r| < pi/4
      nop.f 0
      nop.i 0
};;

{ .mfi ///////////////////////////// 12 /////////////////
      ldfe FR_QQ_7 = [GR_ad_qq], 16        // Load QQ_7 for 2^-3 < |r| < pi/4
      fma.s1  FR_N_float_signif = FR_Input_X, FR_inv_pi_2to63, FR_rshf_2to64
      add GR_ad_se = 0x40, GR_ad_s         // Point to end of constant table s
}
{ .mib
      ldfe FR_PP_7 = [GR_ad_pp], 16        // Load PP_7 for 2^-3 < |r| < pi/4
      mov GR_ad_s1 = GR_ad_s               // Save pointer to S_1
(p10) br.cond.spnt SINCOSL_ARG_TOO_LARGE   // Branch if |x| >= 2^63
                                           // Use Payne-Hanek Reduction
};;

{ .mfi ///////////////////////////// 13 /////////////////
      ldfe FR_P_3 = [GR_ad_p], 16          // Load P_3 for pi/4 <= |x| < 2^63
      fmerge.se FR_r = FR_norm_x, FR_norm_x // r = x, in case |x| < pi/4
      add GR_ad_m14 = 0x50, GR_ad_s        // Point to constant table m14
}
{ .mfb
      ldfps FR_Two_to_M3, FR_Neg_Two_to_M3 = [GR_ad_d], 8
      fma.s1 FR_rsq = FR_norm_x, FR_norm_x, f0 // rsq = x*x, in case |x| < pi/4
(p7)  br.cond.spnt SINCOSL_LARGER_ARG      // Branch if 2^24 <= |x| < 2^63
                                           // Use pre-reduction
};;

{ .mmf ///////////////////////////// 14 /////////////////
      ldfe FR_PP_6 = [GR_ad_pp], 16       // Load PP_6 for normal path
      ldfe FR_QQ_6 = [GR_ad_qq], 16       // Load QQ_6 for normal path
      fmerge.se FR_c = f0, f0             // c = 0 in case |x| < pi/4
};;

{ .mmf ///////////////////////////// 15 /////////////////
      ldfe FR_PP_5 = [GR_ad_pp], 16       // Load PP_5 for normal path
      ldfe FR_QQ_5 = [GR_ad_qq], 16       // Load QQ_5 for normal path
      nop.f 0
};;

// Here if 0 < |x| < 2^24
{ .mfi ///////////////////////////// 17 /////////////////
      ldfe FR_S_5 = [GR_ad_se], -16       // Load S_5 if i_1=0
      fcmp.lt.s1  p6, p7 = FR_abs_x, FR_Pi_by_4  // Test |x| < pi/4
      nop.i 0
}
{ .mfi
      ldfe FR_C_5 = [GR_ad_ce], -16       // Load C_5 if i_1=1
      fms.s1 FR_N_float = FR_N_float_signif, FR_2tom64, FR_rshf
      nop.i 0
};;

{ .mmi ///////////////////////////// 18 /////////////////
      ldfe FR_S_4 = [GR_ad_se], -16       // Load S_4 if i_1=0
      ldfe FR_C_4 = [GR_ad_ce], -16       // Load C_4 if i_1=1
      nop.i 0
};;

//
//     N  = Arg * 2/pi
//     Check if Arg < pi/4
//
//
//     Case 2: Convert integer N_fix back to normalized floating-point value.
//     Case 1: p8 is only affected  when p6 is set
//
//
//     Grab the integer part of N and call it N_fix
//
{ .mfi ///////////////////////////// 19 /////////////////
(p7)  ldfps FR_Two_to_M33, FR_Neg_Two_to_M33 = [GR_ad_d], 8
(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0        // r^3 if |x| < pi/4
(p6)  mov GR_N_Inc = 0x0                         // N_IncS if |x| < pi/4
};;

//     If |x| < pi/4, r = x and c = 0
//     lf |x| < pi/4, is x < 2**(-3).
//     r = Arg
//     c = 0
{ .mmi ///////////////////////////// 20 /////////////////
(p7)  getf.sig  GR_N_Inc = FR_N_float_signif
      nop.m 0
(p6)  cmp.lt.unc p8,p0 = GR_exp_x, GR_exp_2_to_m3   // Is |x| < 2^-3
};;

//
//     lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
//     If |x| >= pi/4,
//     Create the right N for |x| < pi/4 and otherwise
//     Case 2: Place integer part of N in GP register
//

{ .mbb ///////////////////////////// 21 /////////////////
      nop.m 0
(p8)  br.cond.spnt SINCOSL_SMALL_R_0    // Branch if 0 < |x| < 2^-3
(p6)  br.cond.spnt SINCOSL_NORMAL_R_0   // Branch if 2^-3 <= |x| < pi/4
};;

// Here if pi/4 <= |x| < 2^24
{ .mfi
      ldfs FR_Neg_Two_to_M67 = [GR_ad_d], 8     // Load -2^-67
      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X // s = -N * P_1  + Arg
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_w = FR_N_float, FR_P_2, f0      // w = N * P_2
      nop.i 0
};;

{ .mfi
      nop.m 0
      fms.s1 FR_r = FR_s, f1, FR_w        // r = s - w, assume |s| >= 2^-33
      nop.i 0
};;

{ .mfi
      nop.m 0
      fcmp.lt.s1 p7, p6 = FR_s, FR_Two_to_M33
      nop.i 0
};;

{ .mfi
      nop.m 0
(p7)  fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33 // p6 if |s| >= 2^-33, else p7
      nop.i 0
};;

{ .mfi
      nop.m 0
      fms.s1 FR_c = FR_s, f1, FR_r             // c = s - r, for |s| >= 2^-33
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_rsq = FR_r, FR_r, f0           // rsq = r * r, for |s| >= 2^-33
      nop.i 0
};;

{ .mfi
      nop.m 0
(p7)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
      nop.i 0
};;

{ .mmf
      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1 if i_1=0
      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1 if i_1=1
      frcpa.s1 FR_r_hi, p15 = f1, FR_r  // r_hi = frcpa(r)
};;

{ .mfi
      nop.m 0
(p6)  fcmp.lt.unc.s1 p8, p13 = FR_r, FR_Two_to_M3 // If big s, test r with 2^-3
      nop.i 0
};;

{ .mfi
      nop.m 0
(p7)  fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
      nop.i 0
};;

//
//     For big s: r = s - w: No futher reduction is necessary
//     For small s: w = N * P_3 (change sign) More reduction
//
{ .mfi
    nop.m 0
(p8)  fcmp.gt.s1 p8, p13 = FR_r, FR_Neg_Two_to_M3 // If big s, p8 if |r| < 2^-3
    nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
      nop.i 0
};;

{ .mfi
      nop.m 0
(p7)  fms.s1 FR_r = FR_s, f1, FR_U_1
      nop.i 0
};;

{ .mfi
      nop.m 0
(p6)  fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
      nop.i 0
};;

{ .mfi
//
//     For big s: Is |r| < 2**(-3)?
//     For big s: c = S - r
//     For small s: U_1 = N * P_2 + w
//
//     If p8 is set, prepare to branch to Small_R.
//     If p9 is set, prepare to branch to Normal_R.
//     For big s,  r is complete here.
//
//
//     For big s: c = c + w (w has not been negated.)
//     For small s: r = S - U_1
//
      nop.m 0
(p6)  fms.s1 FR_c = FR_c, f1, FR_w
      nop.i 0
}
{ .mbb
      nop.m 0
(p8)  br.cond.spnt  SINCOSL_SMALL_R_1  // Branch if |s|>=2^-33, |r| < 2^-3,
                                       // and pi/4 <= |x| < 2^24
(p13) br.cond.sptk  SINCOSL_NORMAL_R_1 // Branch if |s|>=2^-33, |r| >= 2^-3,
                                       // and pi/4 <= |x| < 2^24
};;

SINCOSL_S_TINY:
//
// Here if |s| < 2^-33, and pi/4 <= |x| < 2^24
//
{ .mfi
       and GR_N_SinCos = 0x1, GR_N_Inc
       fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
       tbit.z p8,p12       = GR_N_Inc, 0
};;


//
//     For small s: U_2 = N * P_2 - U_1
//     S_1 stored constant - grab the one stored with the
//     coefficients.
//
{ .mfi
      ldfe      FR_S_1 = [GR_ad_s1], 16
      fma.s1  FR_polyC = f0, f1, FR_Neg_Two_to_M67
      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
}
{ .mfi
      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
      nop.f 0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fms.s1  FR_s = FR_s, f1, FR_r
(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
}
{ .mfi
      nop.m 0
      fma.s1  FR_rsq = FR_r, FR_r, f0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1  FR_U_2 = FR_U_2, f1, FR_w
(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
};;

{ .mfi
      nop.m 0
      fmerge.se FR_FirstS = FR_r, FR_r
(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_FirstC = f0, f1, f1
      nop.i 0
};;

{ .mfi
      nop.m 0
      fms.s1  FR_c = FR_s, f1, FR_U_1
(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
};;

{ .mfi
      nop.m 0
      fma.s1  FR_r = FR_S_1, FR_r, f0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s0  FR_S_1 = FR_S_1, FR_S_1, f0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fms.s1 FR_c = FR_c, f1, FR_U_2
      nop.i 0
};;

.pred.rel "mutex",p9,p15
{ .mfi
      nop.m 0
(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
}
{ .mfi
      nop.m 0
(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
};;

.pred.rel "mutex",p11,p13
{ .mfi
      nop.m 0
(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
}
{ .mfi
      nop.m 0
(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_r, FR_rsq, FR_c
      nop.i 0
};;


.pred.rel "mutex",p8,p9
{ .mfi
      nop.m 0
(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
};;

.pred.rel "mutex",p10,p11
{ .mfi
      nop.m 0
(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
};;



.pred.rel "mutex",p12,p13
{ .mfi
      nop.m 0
(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
};;

.pred.rel "mutex",p14,p15
{ .mfi
      nop.m 0
(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfb
      cmp.eq  p10, p0 = 0x1, GR_Cis
(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p10) br.ret.sptk               b0
};;

{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;






SINCOSL_LARGER_ARG:
//
// Here if 2^24 <= |x| < 2^63
//
{ .mfi
      ldfe FR_d_1 = [GR_ad_p], 16          // Load d_1 for |x| >= 2^24 path
      fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0 //     N_0 = Arg * Inv_P_0
      nop.i 0
};;

{ .mmi
      ldfps FR_Two_to_M14, FR_Neg_Two_to_M14 = [GR_ad_m14]
      nop.m 0
      nop.i 0
};;

{ .mfi
      ldfe FR_d_2 = [GR_ad_p], 16          // Load d_2 for |x| >= 2^24 path
      nop.f 0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fcvt.fx.s1 FR_N_0_fix = FR_N_0 // N_0_fix  = integer part of N_0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fcvt.xf FR_N_0 = FR_N_0_fix //     Make N_0 the integer part
      nop.i 0
};;

{ .mfi
      nop.m 0
      fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X // Arg'=-N_0*P_0+Arg
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_w = FR_N_0, FR_d_1, f0 //     w  = N_0 * d_1
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0 //  N = A' * 2/pi
      nop.i 0
};;

{ .mfi
      nop.m 0
      fcvt.fx.s1 FR_N_fix = FR_N_float //     N_fix is the integer part
      nop.i 0
};;

{ .mfi
      nop.m 0
      fcvt.xf FR_N_float = FR_N_fix
      nop.i 0
};;

{ .mfi
      getf.sig GR_N_Inc = FR_N_fix // N is the integer part of
                                 // the reduced-reduced argument
      nop.f 0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime //     s = -N*P_1 + Arg'
      nop.i 0
}
{ .mfi
      nop.m 0
      fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w //     w = -N*P_2 + w
      nop.i 0
};;

//
//     For |s|  > 2**(-14) r = S + w (r complete)
//     Else       U_hi = N_0 * d_1
//
{ .mfi
      nop.m 0
      fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
      nop.i 0
};;

{ .mfi
      nop.m 0
(p9)  fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14  // p9 if |s| < 2^-14
      nop.i 0
};;

//
//     Either S <= -2**(-14) or S >= 2**(-14)
//     or -2**(-14) < s < 2**(-14)
//
{ .mfi
      nop.m 0
(p9)  fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
      nop.i 0
};;

{ .mfi
      nop.m 0
(p8)  fma.s1 FR_r = FR_s, f1, FR_w
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fma.s1 FR_w = FR_N_float, FR_P_3, f0
      nop.i 0
};;

//
//    We need abs of both U_hi and V_hi - don't
//    worry about switched sign of V_hi.
//
//    Big s: finish up c = (S - r) + w (c complete)
//    Case 4: A =  U_hi + V_hi
//    Note: Worry about switched sign of V_hi, so subtract instead of add.
//
{ .mfi
      nop.m 0
(p9)  fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
      nop.i 0
};;

{ .mfi
      nop.m 0
(p9)  fmerge.s FR_V_hiabs = f0, FR_V_hi
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi // For small s: U_lo=N_0*d_1-U_hi
      nop.i 0
};;

//
//    For big s: Is |r| < 2**(-3)
//    For big s: if p12 set, prepare to branch to Small_R.
//    For big s: If p13 set, prepare to branch to Normal_R.
//
{ .mfi
      nop.m 0
(p9)  fmerge.s FR_U_hiabs = f0, FR_U_hi
      nop.i 0
}
{ .mfi
      nop.m 0
(p8)  fms.s1 FR_c = FR_s, f1, FR_r  //     For big s: c = S - r
      nop.i 0
};;

//
//    For small S: V_hi = N * P_2
//                 w = N * P_3
//    Note the product does not include the (-) as in the writeup
//    so (-) missing for V_hi and w.
//
{ .mfi
      nop.m 0
(p8)  fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
      nop.i 0
};;

{ .mfi
      nop.m 0
(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
      nop.i 0
};;

{ .mfi
      nop.m 0
(p8)  fma.s1 FR_c = FR_c, f1, FR_w
      nop.i 0
}
{ .mfb
      nop.m 0
(p9)  fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
(p12) br.cond.spnt SINCOSL_SMALL_R      // Branch if |r| < 2^-3
                                        // and 2^24 <= |x| < 2^63
};;

{ .mib
      nop.m 0
      nop.i 0
(p13) br.cond.sptk SINCOSL_NORMAL_R     // Branch if |r| >= 2^-3
                                        // and 2^24 <= |x| < 2^63
};;

SINCOSL_LARGER_S_TINY:
//    Here if |s| < 2^-14, and 2^24 <= |x| < 2^63
//
//    Big s: Vector off when |r| < 2**(-3).  Recall that p8 will be true.
//    The remaining stuff is for Case 4.
//    Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
//    Note: the (-) is still missing for V_lo.
//    Small s: w = w + N_0 * d_2
//    Note: the (-) is now incorporated in w.
//
{ .mfi
      and GR_N_SinCos = 0x1, GR_N_Inc
      fcmp.ge.unc.s1 p6, p7 = FR_U_hiabs, FR_V_hiabs
      tbit.z p8,p12       = GR_N_Inc, 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_t = FR_U_lo, f1, FR_V_lo //     C_hi = S + A
      nop.i 0
};;

{ .mfi
      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
(p6)  fms.s1 FR_a = FR_U_hi, f1, FR_A
      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
}
{ .mfi
      nop.m 0
(p7)  fma.s1 FR_a = FR_V_hi, f1, FR_A
      nop.i 0
};;

{ .mmf
      ldfe FR_C_1 = [GR_ad_c], 16
      ldfe  FR_S_1 = [GR_ad_s], 16
      fma.s1 FR_C_hi = FR_s, f1, FR_A
};;

{ .mmi
      ldfe FR_C_2 = [GR_ad_c], 64
      ldfe FR_S_2 = [GR_ad_s], 64
(p8)  tbit.z.unc p10,p11   = GR_N_SignC, 1
};;

//
//    r and c have been computed.
//    Make sure ftz mode is set - should be automatic when using wre
//    |r| < 2**(-3)
//    Get [i_0,i_1] - two lsb of N_fix.
//
//    For larger u than v: a = U_hi - A
//    Else a = V_hi - A (do an add to account for missing (-) on V_hi
//
{ .mfi
      nop.m 0
      fma.s1 FR_t = FR_t, f1, FR_w //     t = t + w
(p8)  tbit.z.unc p8,p9    = GR_N_SignS, 1
}
{ .mfi
      nop.m 0
(p6)  fms.s1 FR_a = FR_a, f1, FR_V_hi
      nop.i 0
};;

//
//     If u > v: a = (U_hi - A)  + V_hi
//     Else      a = (V_hi - A)  + U_hi
//     In each case account for negative missing from V_hi.
//
{ .mfi
      nop.m 0
      fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
(p12) tbit.z.unc p14,p15  = GR_N_SignC, 1
}
{ .mfi
      nop.m 0
(p7)  fms.s1 FR_a = FR_U_hi, f1, FR_a
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_C_lo = FR_C_lo, f1, FR_A //     C_lo = (S - C_hi) + A
(p12) tbit.z.unc p12,p13  = GR_N_SignS, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_t = FR_t, f1, FR_a //     t = t + a
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_C_lo = FR_C_lo, f1, FR_t //     C_lo = C_lo + t
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_rsq = FR_r, FR_r, f0
      nop.i 0
}
{ .mfi
      nop.m 0
      fms.s1 FR_c = FR_C_hi, f1, FR_r
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_FirstS = f0, f1, FR_r
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_FirstC = f0, f1, f1
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_S_2, FR_S_1
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_C_2, FR_C_1
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_c = FR_c, f1, FR_C_lo
      nop.i 0
};;

.pred.rel "mutex",p9,p15
{ .mfi
      nop.m 0
(p9)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
}
{ .mfi
      nop.m 0
(p15) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
};;

.pred.rel "mutex",p11,p13
{ .mfi
      nop.m 0
(p11) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
}
{ .mfi
      nop.m 0
(p13) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, FR_c
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0
      nop.i 0
};;



.pred.rel "mutex",p8,p9
{ .mfi
      nop.m 0
(p8)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfi
      nop.m 0
(p9)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
};;

.pred.rel "mutex",p10,p11
{ .mfi
      nop.m 0
(p10) fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p11) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
};;



.pred.rel "mutex",p12,p13
{ .mfi
      nop.m 0
(p12) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p13) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
};;

.pred.rel "mutex",p14,p15
{ .mfi
      nop.m 0
(p14) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfb
      cmp.eq  p10, p0 = 0x1, GR_Cis
(p15) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p10) br.ret.sptk               b0
};;


{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;



SINCOSL_SMALL_R:
//
// Here if |r| < 2^-3
//
// Enter with r, c, and N_Inc computed
//
{ .mfi
      nop.m 0
      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
      nop.i 0
};;

{ .mmi
      ldfe FR_S_5 = [GR_ad_se], -16    // Load S_5
      ldfe FR_C_5 = [GR_ad_ce], -16    // Load C_5
      nop.i 0
};;

{ .mmi
      ldfe FR_S_4 = [GR_ad_se], -16    // Load S_4
      ldfe FR_C_4 = [GR_ad_ce], -16    // Load C_4
      nop.i 0
};;

SINCOSL_SMALL_R_0:
// Entry point for 2^-3 < |x| < pi/4
SINCOSL_SMALL_R_1:
// Entry point for pi/4 < |x| < 2^24 and |r| < 2^-3
{ .mfi
      ldfe   FR_S_3 = [GR_ad_se], -16    // Load S_3
      fma.s1 FR_r6  = FR_rsq, FR_rsq, f0 // Z = rsq * rsq
      tbit.z p7,p11       = GR_N_Inc, 0
}
{ .mfi
      ldfe    FR_C_3 = [GR_ad_ce], -16   // Load C_3
      nop.f 0
      and GR_N_SinCos = 0x1, GR_N_Inc
};;

{ .mfi
      ldfe   FR_S_2 = [GR_ad_se], -16    // Load S_2
      fnma.s1 FR_cC = FR_c, FR_r, f0     // c = -c * r
      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
}
{ .mfi
      ldfe   FR_C_2 = [GR_ad_ce], -16    // Load C_2
      nop.f 0
      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
};;

{ .mmi
      ldfe FR_S_1 = [GR_ad_se], -16    // Load S_1
      ldfe FR_C_1 = [GR_ad_ce], -16    // Load C_1
(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
};;

{ .mfi
      nop.m 0
      fma.s1 FR_r7 = FR_r6, FR_r, f0     // Z = Z * r
(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
};;

{ .mfi
      nop.m 0
      fma.s1 FR_poly_loS = FR_rsq, FR_S_5, FR_S_4 // poly_lo=rsq*S_5+S_4
(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_poly_loC = FR_rsq, FR_C_5, FR_C_4 // poly_lo=rsq*C_5+C_4
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_poly_hiS = FR_rsq, FR_S_2, FR_S_1 // poly_hi=rsq*S_2+S_1
(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_poly_hiC = FR_rsq, FR_C_2, FR_C_1 // poly_hi=rsq*C_2+C_1
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s0 FR_FirstS = FR_r, f1, f0
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s0 FR_FirstC = f1, f1, f0
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_r6 = FR_r6, FR_rsq, f0
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_r7 = FR_r7, FR_rsq, f0
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_poly_loS = FR_rsq, FR_poly_loS, FR_S_3 // p_lo=p_lo*rsq+S_3
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_poly_loC = FR_rsq, FR_poly_loC, FR_C_3 // p_lo=p_lo*rsq+C_3
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s0 FR_inexact = FR_S_4, FR_S_4, f0     // Dummy op to set inexact
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_poly_hiS = FR_poly_hiS, FR_rsq, f0     // p_hi=p_hi*rsq
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_poly_hiC = FR_poly_hiC, FR_rsq, f0     // p_hi=p_hi*rsq
      nop.i 0
};;

.pred.rel "mutex",p8,p14
{ .mfi
      nop.m 0
(p8)  fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
}
{ .mfi
      nop.m 0
(p14) fms.s0 FR_FirstS   = f1, f0, FR_FirstS
      nop.i 0
};;

.pred.rel "mutex",p10,p12
{ .mfi
      nop.m 0
(p10) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
}
{ .mfi
      nop.m 0
(p12) fms.s0 FR_FirstC   = f1, f0, FR_FirstC
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_r7, FR_poly_loS, FR_cS        // poly=Z*poly_lo+c
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_r6, FR_poly_loC, FR_cC        // poly=Z*poly_lo+c
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_poly_hiS = FR_r, FR_poly_hiS, f0       // p_hi=r*p_hi
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_polyS, f1, FR_poly_hiS
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_polyC, f1, FR_poly_hiC
      nop.i 0
};;

.pred.rel "mutex",p7,p8
{ .mfi
      nop.m 0
(p7)  fma.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfi
      nop.m 0
(p8)  fms.s0 FR_ResultS = FR_FirstS, f1, FR_polyS
      nop.i 0
};;

.pred.rel "mutex",p9,p10
{ .mfi
      nop.m 0
(p9)  fma.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p10) fms.s0 FR_ResultC = FR_FirstC, f1, FR_polyC
      nop.i 0
};;

.pred.rel "mutex",p11,p12
{ .mfi
      nop.m 0
(p11) fma.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
}
{ .mfi
      nop.m 0
(p12) fms.s0 FR_ResultS = FR_FirstC, f1, FR_polyC
      nop.i 0
};;

.pred.rel "mutex",p13,p14
{ .mfi
      nop.m 0
(p13) fma.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
      nop.i 0
}
{ .mfb
      cmp.eq  p15, p0 = 0x1, GR_Cis
(p14) fms.s0 FR_ResultC = FR_FirstS, f1, FR_polyS
(p15) br.ret.sptk               b0
};;


{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;






SINCOSL_NORMAL_R:
//
// Here if 2^-3 <= |r| < pi/4
// THIS IS THE MAIN PATH
//
// Enter with r, c, and N_Inc having been computed
//
{ .mfi
      ldfe FR_PP_6 = [GR_ad_pp], 16    // Load PP_6
      fma.s1 FR_rsq = FR_r, FR_r, f0   // rsq = r * r
      nop.i 0
}
{ .mfi
      ldfe FR_QQ_6 = [GR_ad_qq], 16    // Load QQ_6
      nop.f 0
      nop.i 0
};;

{ .mmi
      ldfe FR_PP_5 = [GR_ad_pp], 16    // Load PP_5
      ldfe FR_QQ_5 = [GR_ad_qq], 16    // Load QQ_5
      nop.i 0
};;



SINCOSL_NORMAL_R_0:
// Entry for 2^-3 < |x| < pi/4
.pred.rel "mutex",p9,p10
{ .mmf
      ldfe FR_C_1 = [GR_ad_pp], 16     // Load C_1
      ldfe FR_S_1 = [GR_ad_qq], 16     // Load S_1
      frcpa.s1 FR_r_hi, p6 = f1, FR_r  // r_hi = frcpa(r)
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_PP_8, FR_PP_7 // poly = rsq*PP_8+PP_7
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_QQ_8, FR_QQ_7 // poly = rsq*QQ_8+QQ_7
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_r_cubed = FR_r, FR_rsq, f0  // rcubed = r * rsq
      nop.i 0
};;


SINCOSL_NORMAL_R_1:
// Entry for pi/4 <= |x| < 2^24
.pred.rel "mutex",p9,p10
{ .mmf
      ldfe FR_PP_1 = [GR_ad_pp], 16             // Load PP_1_hi
      ldfe FR_QQ_1 = [GR_ad_qq], 16             // Load QQ_1
      frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi        // r_hi = frpca(frcpa(r))
};;

{ .mfi
      ldfe FR_PP_4 = [GR_ad_pp], 16             // Load PP_4
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_6 // poly = rsq*poly+PP_6
      and GR_N_SinCos = 0x1, GR_N_Inc
}
{ .mfi
      ldfe FR_QQ_4 = [GR_ad_qq], 16             // Load QQ_4
      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_6 // poly = rsq*poly+QQ_6
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_corrS = FR_C_1, FR_rsq, f0       // corr = C_1 * rsq
      sub GR_N_SignS =  GR_N_Inc, GR_N_SinCos
}
{ .mfi
      nop.m 0
      fma.s1 FR_corrC = FR_S_1, FR_r_cubed, FR_r // corr = S_1 * r^3 + r
      add GR_N_SignC =  GR_N_Inc, GR_N_SinCos
};;

{ .mfi
      ldfe FR_PP_3 = [GR_ad_pp], 16             // Load PP_3
      fma.s1 FR_r_hi_sq = FR_r_hi, FR_r_hi, f0  // r_hi_sq = r_hi * r_hi
      tbit.z p7,p11       = GR_N_Inc, 0
}
{ .mfi
      ldfe FR_QQ_3 = [GR_ad_qq], 16             // Load QQ_3
      fms.s1 FR_r_lo = FR_r, f1, FR_r_hi        // r_lo = r - r_hi
      nop.i 0
};;

{ .mfi
      ldfe FR_PP_2 = [GR_ad_pp], 16             // Load PP_2
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_5 // poly = rsq*poly+PP_5
(p7)  tbit.z.unc p9,p10   = GR_N_SignC, 1
}
{ .mfi
      ldfe FR_QQ_2 = [GR_ad_qq], 16             // Load QQ_2
      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_5 // poly = rsq*poly+QQ_5
      nop.i 0
};;

{ .mfi
      ldfe FR_PP_1_lo = [GR_ad_pp], 16          // Load PP_1_lo
      fma.s1 FR_corrS = FR_corrS, FR_c, FR_c      // corr = corr * c + c
(p7)  tbit.z.unc p7,p8    = GR_N_SignS, 1
}
{ .mfi
      nop.m 0
      fnma.s1 FR_corrC = FR_corrC, FR_c, f0       // corr = -corr * c
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_loS = FR_r, FR_r_hi, FR_r_hi_sq // U_lo = r*r_hi+r_hi_sq
(p11) tbit.z.unc p13,p14  = GR_N_SignC, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_U_loC = FR_r_hi, f1, FR_r        // U_lo = r_hi + r
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_hiS = FR_r_hi, FR_r_hi_sq, f0  // U_hi = r_hi*r_hi_sq
(p11) tbit.z.unc p11,p12  = GR_N_SignS, 1
}
{ .mfi
      nop.m 0
      fma.s1 FR_U_hiC = FR_QQ_1, FR_r_hi_sq, f1  // U_hi = QQ_1*r_hi_sq+1
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_4 // poly = poly*rsq+PP_4
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_4 // poly = poly*rsq+QQ_4
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_loS = FR_r, FR_r, FR_U_loS      // U_lo = r * r + U_lo
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_U_loC = FR_r_lo, FR_U_loC, f0     // U_lo = r_lo * U_lo
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_hiS = FR_PP_1, FR_U_hiS, f0     // U_hi = PP_1 * U_hi
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_3 // poly = poly*rsq+PP_3
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_3 // poly = poly*rsq+QQ_3
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_loS = FR_r_lo, FR_U_loS, f0     // U_lo = r_lo * U_lo
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_U_loC = FR_QQ_1,FR_U_loC, f0      // U_lo = QQ_1 * U_lo
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_hiS = FR_r, f1, FR_U_hiS        // U_hi = r + U_hi
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_2 // poly = poly*rsq+PP_2
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, FR_QQ_2 // poly = poly*rsq+QQ_2
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_U_loS = FR_PP_1, FR_U_loS, f0     // U_lo = PP_1 * U_lo
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_rsq, FR_polyS, FR_PP_1_lo // poly =poly*rsq+PP1lo
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
      nop.i 0
};;


.pred.rel "mutex",p8,p14
{ .mfi
      nop.m 0
(p8)  fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
      nop.i 0
}
{ .mfi
      nop.m 0
(p14) fms.s0 FR_U_hiS   = f1, f0, FR_U_hiS
      nop.i 0
};;

.pred.rel "mutex",p10,p12
{ .mfi
      nop.m 0
(p10) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
      nop.i 0
}
{ .mfi
      nop.m 0
(p12) fms.s0 FR_U_hiC   = f1, f0, FR_U_hiC
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_VS = FR_U_loS, f1, FR_corrS        // V = U_lo + corr
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_VC = FR_U_loC, f1, FR_corrC        // V = U_lo + corr
      nop.i 0
};;

{ .mfi
      nop.m 0
      fma.s0 FR_inexact = FR_PP_5, FR_PP_4, f0  // Dummy op to set inexact
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_polyS = FR_r_cubed, FR_polyS, f0  // poly = poly*r^3
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_polyC = FR_rsq, FR_polyC, f0      // poly = poly*rsq
      nop.i 0
};;


{ .mfi
      nop.m 0
      fma.s1 FR_VS = FR_polyS, f1, FR_VS           // V = poly + V
      nop.i 0
}
{ .mfi
      nop.m 0
      fma.s1 FR_VC = FR_polyC, f1, FR_VC           // V = poly + V
      nop.i 0
};;



.pred.rel "mutex",p7,p8
{ .mfi
      nop.m 0
(p7)  fma.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
      nop.i 0
}
{ .mfi
      nop.m 0
(p8)  fms.s0 FR_ResultS = FR_U_hiS, f1, FR_VS
      nop.i 0
};;

.pred.rel "mutex",p9,p10
{ .mfi
      nop.m 0
(p9)  fma.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
      nop.i 0
}
{ .mfi
      nop.m 0
(p10) fms.s0 FR_ResultC = FR_U_hiC, f1, FR_VC
      nop.i 0
};;



.pred.rel "mutex",p11,p12
{ .mfi
      nop.m 0
(p11) fma.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
      nop.i 0
}
{ .mfi
      nop.m 0
(p12) fms.s0 FR_ResultS = FR_U_hiC, f1, FR_VC
      nop.i 0
};;

.pred.rel "mutex",p13,p14
{ .mfi
      nop.m 0
(p13) fma.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
      nop.i 0
}
{ .mfb
      cmp.eq  p15, p0 = 0x1, GR_Cis
(p14) fms.s0 FR_ResultC = FR_U_hiS, f1, FR_VS
(p15) br.ret.sptk               b0
};;

{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;





SINCOSL_ZERO:

{ .mfi
      nop.m 0
      fmerge.s FR_ResultS = FR_Input_X, FR_Input_X // If sin, result = input
      nop.i 0
}
{ .mfb
      cmp.eq  p15, p0 = 0x1, GR_Cis
      fma.s0 FR_ResultC = f1, f1, f0    // If cos, result=1.0
(p15) br.ret.sptk               b0
};;

{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;


SINCOSL_DENORMAL:
{ .mmb
      getf.exp GR_signexp_x = FR_norm_x   // Get sign and exponent of x
      nop.m 999
      br.cond.sptk  SINCOSL_COMMON2        // Return to common code
}
;;


SINCOSL_SPECIAL:
//
//    Path for Arg = +/- QNaN, SNaN, Inf
//    Invalid can be raised. SNaNs
//    become QNaNs
//
{ .mfi
      cmp.eq  p15, p0 = 0x1, GR_Cis
      fmpy.s0 FR_ResultS = FR_Input_X, f0
      nop.i 0
}
{ .mfb
      nop.m 0
      fmpy.s0 FR_ResultC = FR_Input_X, f0
(p15) br.ret.sptk               b0
};;

{ .mmb       // exit for sincosl
      stfe  [sincos_pResSin] =  FR_ResultS
      stfe  [sincos_pResCos] =  FR_ResultC
      br.ret.sptk               b0
};;

GLOBAL_LIBM_END(__libm_sincosl)


// *******************************************************************
// *******************************************************************
// *******************************************************************
//
//     Special Code to handle very large argument case.
//     Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
//     The interface is custom:
//       On input:
//         (Arg or x) is in f8
//       On output:
//         r is in f8
//         c is in f9
//         N is in r8
//     Be sure to allocate at least 2 GP registers as output registers for
//     __libm_pi_by_2_reduce.  This routine uses r62-63. These are used as
//     scratch registers within the __libm_pi_by_2_reduce routine (for speed).
//
//     We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127.  We
//     use this to eliminate save/restore of key fp registers in this calling
//     function.
//
// *******************************************************************
// *******************************************************************
// *******************************************************************

LOCAL_LIBM_ENTRY(__libm_callout)
SINCOSL_ARG_TOO_LARGE:
.prologue
{ .mfi
        nop.f 0
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
};;

{ .mmi
        setf.exp FR_Two_to_M3 = GR_exp_2_to_m3  // Form 2^-3
        mov GR_SAVE_GP=gp                       // Save gp
.save   b0, GR_SAVE_B0
        mov GR_SAVE_B0=b0                       // Save b0
};;

.body
//
//     Call argument reduction with x in f8
//     Returns with N in r8, r in f8, c in f9
//     Assumes f71-127 are preserved across the call
//
{ .mib
        setf.exp FR_Neg_Two_to_M3 = GR_exp_m2_to_m3 // Form -(2^-3)
        nop.i 0
        br.call.sptk b0=__libm_pi_by_2_reduce#
};;

{ .mfi
        mov   GR_N_Inc = r8
        fcmp.lt.unc.s1  p6, p0 = FR_r, FR_Two_to_M3
        mov   b0 = GR_SAVE_B0                  // Restore return address
};;

{ .mfi
        mov   gp = GR_SAVE_GP                  // Restore gp
(p6)    fcmp.gt.unc.s1  p6, p0 = FR_r, FR_Neg_Two_to_M3
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
};;

{ .mbb
  nop.m 0
(p6)    br.cond.spnt SINCOSL_SMALL_R     // Branch if |r|< 2^-3 for |x| >= 2^63
        br.cond.sptk SINCOSL_NORMAL_R    // Branch if |r|>=2^-3 for |x| >= 2^63
};;

LOCAL_LIBM_END(__libm_callout)

.type   __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#