/* Implementation for strrchr using evex256 and evex512. Copyright (C) 2022-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #if ISA_SHOULD_BUILD (4) # include # ifdef USE_AS_WCSRCHR # if VEC_SIZE == 64 # define RCX_M cx # define KORTEST_M kortestw # else # define RCX_M cl # define KORTEST_M kortestb # endif # define SHIFT_REG VRCX # define CHAR_SIZE 4 # define VPCMP vpcmpd # define VPMIN vpminud # define VPTESTN vptestnmd # define VPTEST vptestmd # define VPBROADCAST vpbroadcastd # define VPCMPEQ vpcmpeqd # else # if VEC_SIZE == 64 # define SHIFT_REG VRCX # else # define SHIFT_REG VRDI # endif # define CHAR_SIZE 1 # define VPCMP vpcmpb # define VPMIN vpminub # define VPTESTN vptestnmb # define VPTEST vptestmb # define VPBROADCAST vpbroadcastb # define VPCMPEQ vpcmpeqb # define RCX_M VRCX # define KORTEST_M KORTEST # endif # if VEC_SIZE == 32 || (defined USE_AS_WCSRCHR) # define SHIFT_R(cnt, val) shrx cnt, val, val # else # define SHIFT_R(cnt, val) shr %cl, val # endif # define VMATCH VMM(0) # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) # define PAGE_SIZE 4096 .section SECTION(.text), "ax", @progbits /* Aligning entry point to 64 byte, provides better performance for one vector length string. */ ENTRY_P2ALIGN(STRRCHR, 6) movl %edi, %eax /* Broadcast CHAR to VMATCH. */ VPBROADCAST %esi, %VMATCH andl $(PAGE_SIZE - 1), %eax cmpl $(PAGE_SIZE - VEC_SIZE), %eax jg L(cross_page_boundary) L(page_cross_continue): VMOVU (%rdi), %VMM(1) /* k0 has a 1 for each zero CHAR in YMM1. */ VPTESTN %VMM(1), %VMM(1), %k0 KMOV %k0, %VGPR(rsi) test %VGPR(rsi), %VGPR(rsi) jz L(aligned_more) /* fallthrough: zero CHAR in first VEC. */ /* K1 has a 1 for each search CHAR match in VEC(1). */ VPCMPEQ %VMATCH, %VMM(1), %k1 KMOV %k1, %VGPR(rax) /* Build mask up until first zero CHAR (used to mask of potential search CHAR matches past the end of the string). */ blsmsk %VGPR(rsi), %VGPR(rsi) /* Use `and` here to remove any out of bounds matches so we can do a reverse scan on `rax` to find the last match. */ and %VGPR(rsi), %VGPR(rax) jz L(ret0) /* Get last match. */ bsr %VGPR(rax), %VGPR(rax) # ifdef USE_AS_WCSRCHR leaq (%rdi, %rax, CHAR_SIZE), %rax # else addq %rdi, %rax # endif L(ret0): ret /* Returns for first vec x1/x2/x3 have hard coded backward search path for earlier matches. */ .p2align 4,, 6 L(first_vec_x1): VPCMPEQ %VMATCH, %VMM(2), %k1 KMOV %k1, %VGPR(rax) blsmsk %VGPR(rcx), %VGPR(rcx) /* eax non-zero if search CHAR in range. */ and %VGPR(rcx), %VGPR(rax) jnz L(first_vec_x1_return) /* fallthrough: no match in YMM2 then need to check for earlier matches (in YMM1). */ .p2align 4,, 4 L(first_vec_x0_test): VPCMPEQ %VMATCH, %VMM(1), %k1 KMOV %k1, %VGPR(rax) test %VGPR(rax), %VGPR(rax) jz L(ret1) bsr %VGPR(rax), %VGPR(rax) # ifdef USE_AS_WCSRCHR leaq (%rsi, %rax, CHAR_SIZE), %rax # else addq %rsi, %rax # endif L(ret1): ret .p2align 4,, 10 L(first_vec_x3): VPCMPEQ %VMATCH, %VMM(4), %k1 KMOV %k1, %VGPR(rax) blsmsk %VGPR(rcx), %VGPR(rcx) /* If no search CHAR match in range check YMM1/YMM2/YMM3. */ and %VGPR(rcx), %VGPR(rax) jz L(first_vec_x1_or_x2) bsr %VGPR(rax), %VGPR(rax) leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax ret .p2align 4,, 4 L(first_vec_x2): VPCMPEQ %VMATCH, %VMM(3), %k1 KMOV %k1, %VGPR(rax) blsmsk %VGPR(rcx), %VGPR(rcx) /* Check YMM3 for last match first. If no match try YMM2/YMM1. */ and %VGPR(rcx), %VGPR(rax) jz L(first_vec_x0_x1_test) bsr %VGPR(rax), %VGPR(rax) leaq (VEC_SIZE * 2)(%r8, %rax, CHAR_SIZE), %rax ret .p2align 4,, 6 L(first_vec_x0_x1_test): VPCMPEQ %VMATCH, %VMM(2), %k1 KMOV %k1, %VGPR(rax) /* Check YMM2 for last match first. If no match try YMM1. */ test %VGPR(rax), %VGPR(rax) jz L(first_vec_x0_test) .p2align 4,, 4 L(first_vec_x1_return): bsr %VGPR(rax), %VGPR(rax) leaq (VEC_SIZE)(%r8, %rax, CHAR_SIZE), %rax ret .p2align 4,, 12 L(aligned_more): /* Need to keep original pointer incase VEC(1) has last match. */ movq %rdi, %rsi andq $-VEC_SIZE, %rdi VMOVU VEC_SIZE(%rdi), %VMM(2) VPTESTN %VMM(2), %VMM(2), %k0 KMOV %k0, %VRCX movq %rdi, %r8 test %VRCX, %VRCX jnz L(first_vec_x1) VMOVU (VEC_SIZE * 2)(%rdi), %VMM(3) VPTESTN %VMM(3), %VMM(3), %k0 KMOV %k0, %VRCX test %VRCX, %VRCX jnz L(first_vec_x2) VMOVU (VEC_SIZE * 3)(%rdi), %VMM(4) VPTESTN %VMM(4), %VMM(4), %k0 KMOV %k0, %VRCX /* Intentionally use 64-bit here. EVEX256 version needs 1-byte padding for efficient nop before loop alignment. */ test %rcx, %rcx jnz L(first_vec_x3) andq $-(VEC_SIZE * 2), %rdi .p2align 4 L(first_aligned_loop): /* Preserve VEC(1), VEC(2), VEC(3), and VEC(4) until we can gurantee they don't store a match. */ VMOVA (VEC_SIZE * 4)(%rdi), %VMM(5) VMOVA (VEC_SIZE * 5)(%rdi), %VMM(6) VPCMP $4, %VMM(5), %VMATCH, %k2 VPCMP $4, %VMM(6), %VMATCH, %k3{%k2} VPMIN %VMM(5), %VMM(6), %VMM(7) VPTEST %VMM(7), %VMM(7), %k1{%k3} subq $(VEC_SIZE * -2), %rdi KORTEST_M %k1, %k1 jc L(first_aligned_loop) VPTESTN %VMM(7), %VMM(7), %k1 KMOV %k1, %VRDX test %VRDX, %VRDX jz L(second_aligned_loop_prep) KORTEST_M %k3, %k3 jnc L(return_first_aligned_loop) .p2align 4,, 6 L(first_vec_x1_or_x2_or_x3): VPCMPEQ %VMM(4), %VMATCH, %k4 KMOV %k4, %VRAX test %VRAX, %VRAX jz L(first_vec_x1_or_x2) bsr %VRAX, %VRAX leaq (VEC_SIZE * 3)(%r8, %rax, CHAR_SIZE), %rax ret .p2align 4,, 8 L(return_first_aligned_loop): VPTESTN %VMM(5), %VMM(5), %k0 KMOV %k0, %VRCX blsmsk %VRCX, %VRCX jnc L(return_first_new_match_first) blsmsk %VRDX, %VRDX VPCMPEQ %VMM(6), %VMATCH, %k0 KMOV %k0, %VRAX addq $VEC_SIZE, %rdi and %VRDX, %VRAX jnz L(return_first_new_match_ret) subq $VEC_SIZE, %rdi L(return_first_new_match_first): KMOV %k2, %VRAX # ifdef USE_AS_WCSRCHR xorl $((1 << CHAR_PER_VEC)- 1), %VRAX and %VRCX, %VRAX # else andn %VRCX, %VRAX, %VRAX # endif jz L(first_vec_x1_or_x2_or_x3) L(return_first_new_match_ret): bsr %VRAX, %VRAX leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax ret .p2align 4,, 10 L(first_vec_x1_or_x2): VPCMPEQ %VMM(3), %VMATCH, %k3 KMOV %k3, %VRAX test %VRAX, %VRAX jz L(first_vec_x0_x1_test) bsr %VRAX, %VRAX leaq (VEC_SIZE * 2)(%r8, %rax, CHAR_SIZE), %rax ret .p2align 4 /* We can throw away the work done for the first 4x checks here as we have a later match. This is the 'fast' path persay. */ L(second_aligned_loop_prep): L(second_aligned_loop_set_furthest_match): movq %rdi, %rsi VMOVA %VMM(5), %VMM(7) VMOVA %VMM(6), %VMM(8) .p2align 4 L(second_aligned_loop): VMOVU (VEC_SIZE * 4)(%rdi), %VMM(5) VMOVU (VEC_SIZE * 5)(%rdi), %VMM(6) VPCMP $4, %VMM(5), %VMATCH, %k2 VPCMP $4, %VMM(6), %VMATCH, %k3{%k2} VPMIN %VMM(5), %VMM(6), %VMM(4) VPTEST %VMM(4), %VMM(4), %k1{%k3} subq $(VEC_SIZE * -2), %rdi KMOV %k1, %VRCX inc %RCX_M jz L(second_aligned_loop) VPTESTN %VMM(4), %VMM(4), %k1 KMOV %k1, %VRDX test %VRDX, %VRDX jz L(second_aligned_loop_set_furthest_match) KORTEST_M %k3, %k3 jnc L(return_new_match) /* branch here because there is a significant advantage interms of output dependency chance in using edx. */ L(return_old_match): VPCMPEQ %VMM(8), %VMATCH, %k0 KMOV %k0, %VRCX bsr %VRCX, %VRCX jnz L(return_old_match_ret) VPCMPEQ %VMM(7), %VMATCH, %k0 KMOV %k0, %VRCX bsr %VRCX, %VRCX subq $VEC_SIZE, %rsi L(return_old_match_ret): leaq (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %rax ret L(return_new_match): VPTESTN %VMM(5), %VMM(5), %k0 KMOV %k0, %VRCX blsmsk %VRCX, %VRCX jnc L(return_new_match_first) dec %VRDX VPCMPEQ %VMM(6), %VMATCH, %k0 KMOV %k0, %VRAX addq $VEC_SIZE, %rdi and %VRDX, %VRAX jnz L(return_new_match_ret) subq $VEC_SIZE, %rdi L(return_new_match_first): KMOV %k2, %VRAX # ifdef USE_AS_WCSRCHR xorl $((1 << CHAR_PER_VEC)- 1), %VRAX and %VRCX, %VRAX # else andn %VRCX, %VRAX, %VRAX # endif jz L(return_old_match) L(return_new_match_ret): bsr %VRAX, %VRAX leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax ret L(cross_page_boundary): /* eax contains all the page offset bits of src (rdi). `xor rdi, rax` sets pointer will all page offset bits cleared so offset of (PAGE_SIZE - VEC_SIZE) will get last aligned VEC before page cross (guaranteed to be safe to read). Doing this as opposed to `movq %rdi, %rax; andq $-VEC_SIZE, %rax` saves a bit of code size. */ xorq %rdi, %rax VMOVU (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1) VPTESTN %VMM(1), %VMM(1), %k0 KMOV %k0, %VRSI /* Shift out zero CHAR matches that are before the beginning of src (rdi). */ # if VEC_SIZE == 64 || (defined USE_AS_WCSRCHR) movl %edi, %ecx # endif # ifdef USE_AS_WCSRCHR andl $(VEC_SIZE - 1), %ecx shrl $2, %ecx # endif SHIFT_R (%SHIFT_REG, %VRSI) # if VEC_SIZE == 32 || (defined USE_AS_WCSRCHR) /* For strrchr-evex512 we use SHIFT_R as shr which will set zero flag. */ test %VRSI, %VRSI # endif jz L(page_cross_continue) /* Found zero CHAR so need to test for search CHAR. */ VPCMPEQ %VMATCH, %VMM(1), %k1 KMOV %k1, %VRAX /* Shift out search CHAR matches that are before the beginning of src (rdi). */ SHIFT_R (%SHIFT_REG, %VRAX) /* Check if any search CHAR match in range. */ blsmsk %VRSI, %VRSI and %VRSI, %VRAX jz L(ret2) bsr %VRAX, %VRAX # ifdef USE_AS_WCSRCHR leaq (%rdi, %rax, CHAR_SIZE), %rax # else addq %rdi, %rax # endif L(ret2): ret /* 3 bytes from cache-line for evex. */ /* 0 bytes from cache-line for evex512. */ END(STRRCHR) #endif