/* memmove/memcpy/mempcpy with unaligned load/store and rep movsb Copyright (C) 2016-2021 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* memmove/memcpy/mempcpy is implemented as: 1. Use overlapping load and store to avoid branch. 2. Load all sources into registers and store them together to avoid possible address overlap between source and destination. 3. If size is 8 * VEC_SIZE or less, load all sources into registers and store them together. 4. If address of destination > address of source, backward copy 4 * VEC_SIZE at a time with unaligned load and aligned store. Load the first 4 * VEC and last VEC before the loop and store them after the loop to support overlapping addresses. 5. Otherwise, forward copy 4 * VEC_SIZE at a time with unaligned load and aligned store. Load the last 4 * VEC and first VEC before the loop and store them after the loop to support overlapping addresses. 6. On machines with ERMS feature, if size greater than equal or to __x86_rep_movsb_threshold and less than __x86_rep_movsb_stop_threshold, then REP MOVSB will be used. 7. If size >= __x86_shared_non_temporal_threshold and there is no overlap between destination and source, use non-temporal store instead of aligned store copying from either 2 or 4 pages at once. 8. For point 7) if size < 16 * __x86_shared_non_temporal_threshold and source and destination do not page alias, copy from 2 pages at once using non-temporal stores. Page aliasing in this case is considered true if destination's page alignment - sources' page alignment is less than 8 * VEC_SIZE. 9. If size >= 16 * __x86_shared_non_temporal_threshold or source and destination do page alias copy from 4 pages at once using non-temporal stores. */ #include #ifndef MEMCPY_SYMBOL # define MEMCPY_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) #endif #ifndef MEMPCPY_SYMBOL # define MEMPCPY_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) #endif #ifndef MEMMOVE_CHK_SYMBOL # define MEMMOVE_CHK_SYMBOL(p,s) MEMMOVE_SYMBOL(p, s) #endif #ifndef XMM0 # define XMM0 xmm0 #endif #ifndef YMM0 # define YMM0 ymm0 #endif #ifndef VZEROUPPER # if VEC_SIZE > 16 # define VZEROUPPER vzeroupper # else # define VZEROUPPER # endif #endif /* Whether to align before movsb. Ultimately we want 64 byte align and not worth it to load 4x VEC for VEC_SIZE == 16. */ #define ALIGN_MOVSB (VEC_SIZE > 16) /* Number of bytes to align movsb to. */ #define MOVSB_ALIGN_TO 64 #define SMALL_MOV_SIZE (MOV_SIZE <= 4) #define LARGE_MOV_SIZE (MOV_SIZE > 4) #if SMALL_MOV_SIZE + LARGE_MOV_SIZE != 1 # error MOV_SIZE Unknown #endif #if LARGE_MOV_SIZE # define SMALL_SIZE_OFFSET (4) #else # define SMALL_SIZE_OFFSET (0) #endif #ifndef PAGE_SIZE # define PAGE_SIZE 4096 #endif #if PAGE_SIZE != 4096 # error Unsupported PAGE_SIZE #endif #ifndef LOG_PAGE_SIZE # define LOG_PAGE_SIZE 12 #endif #if PAGE_SIZE != (1 << LOG_PAGE_SIZE) # error Invalid LOG_PAGE_SIZE #endif /* Byte per page for large_memcpy inner loop. */ #if VEC_SIZE == 64 # define LARGE_LOAD_SIZE (VEC_SIZE * 2) #else # define LARGE_LOAD_SIZE (VEC_SIZE * 4) #endif /* Amount to shift rdx by to compare for memcpy_large_4x. */ #ifndef LOG_4X_MEMCPY_THRESH # define LOG_4X_MEMCPY_THRESH 4 #endif /* Avoid short distance rep movsb only with non-SSE vector. */ #ifndef AVOID_SHORT_DISTANCE_REP_MOVSB # define AVOID_SHORT_DISTANCE_REP_MOVSB (VEC_SIZE > 16) #else # define AVOID_SHORT_DISTANCE_REP_MOVSB 0 #endif #ifndef PREFETCH # define PREFETCH(addr) prefetcht0 addr #endif /* Assume 64-byte prefetch size. */ #ifndef PREFETCH_SIZE # define PREFETCH_SIZE 64 #endif #define PREFETCHED_LOAD_SIZE (VEC_SIZE * 4) #if PREFETCH_SIZE == 64 # if PREFETCHED_LOAD_SIZE == PREFETCH_SIZE # define PREFETCH_ONE_SET(dir, base, offset) \ PREFETCH ((offset)base) # elif PREFETCHED_LOAD_SIZE == 2 * PREFETCH_SIZE # define PREFETCH_ONE_SET(dir, base, offset) \ PREFETCH ((offset)base); \ PREFETCH ((offset + dir * PREFETCH_SIZE)base) # elif PREFETCHED_LOAD_SIZE == 4 * PREFETCH_SIZE # define PREFETCH_ONE_SET(dir, base, offset) \ PREFETCH ((offset)base); \ PREFETCH ((offset + dir * PREFETCH_SIZE)base); \ PREFETCH ((offset + dir * PREFETCH_SIZE * 2)base); \ PREFETCH ((offset + dir * PREFETCH_SIZE * 3)base) # else # error Unsupported PREFETCHED_LOAD_SIZE! # endif #else # error Unsupported PREFETCH_SIZE! #endif #if LARGE_LOAD_SIZE == (VEC_SIZE * 2) # define LOAD_ONE_SET(base, offset, vec0, vec1, ...) \ VMOVU (offset)base, vec0; \ VMOVU ((offset) + VEC_SIZE)base, vec1; # define STORE_ONE_SET(base, offset, vec0, vec1, ...) \ VMOVNT vec0, (offset)base; \ VMOVNT vec1, ((offset) + VEC_SIZE)base; #elif LARGE_LOAD_SIZE == (VEC_SIZE * 4) # define LOAD_ONE_SET(base, offset, vec0, vec1, vec2, vec3) \ VMOVU (offset)base, vec0; \ VMOVU ((offset) + VEC_SIZE)base, vec1; \ VMOVU ((offset) + VEC_SIZE * 2)base, vec2; \ VMOVU ((offset) + VEC_SIZE * 3)base, vec3; # define STORE_ONE_SET(base, offset, vec0, vec1, vec2, vec3) \ VMOVNT vec0, (offset)base; \ VMOVNT vec1, ((offset) + VEC_SIZE)base; \ VMOVNT vec2, ((offset) + VEC_SIZE * 2)base; \ VMOVNT vec3, ((offset) + VEC_SIZE * 3)base; #else # error Invalid LARGE_LOAD_SIZE #endif #ifndef SECTION # error SECTION is not defined! #endif .section SECTION(.text),"ax",@progbits #if defined SHARED && IS_IN (libc) ENTRY (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned)) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned)) #endif ENTRY (MEMPCPY_SYMBOL (__mempcpy, unaligned)) mov %RDI_LP, %RAX_LP add %RDX_LP, %RAX_LP jmp L(start) END (MEMPCPY_SYMBOL (__mempcpy, unaligned)) #if defined SHARED && IS_IN (libc) ENTRY (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned)) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned)) #endif ENTRY (MEMMOVE_SYMBOL (__memmove, unaligned)) movq %rdi, %rax L(start): # ifdef __ILP32__ /* Clear the upper 32 bits. */ movl %edx, %edx # endif cmp $VEC_SIZE, %RDX_LP jb L(less_vec) /* Load regardless. */ VMOVU (%rsi), %VEC(0) cmp $(VEC_SIZE * 2), %RDX_LP ja L(more_2x_vec) /* From VEC and to 2 * VEC. No branch when size == VEC_SIZE. */ VMOVU -VEC_SIZE(%rsi,%rdx), %VEC(1) VMOVU %VEC(0), (%rdi) VMOVU %VEC(1), -VEC_SIZE(%rdi,%rdx) #if !(defined USE_MULTIARCH && IS_IN (libc)) ZERO_UPPER_VEC_REGISTERS_RETURN #else VZEROUPPER_RETURN #endif #if defined USE_MULTIARCH && IS_IN (libc) END (MEMMOVE_SYMBOL (__memmove, unaligned)) # if VEC_SIZE == 16 ENTRY (__mempcpy_chk_erms) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (__mempcpy_chk_erms) /* Only used to measure performance of REP MOVSB. */ ENTRY (__mempcpy_erms) mov %RDI_LP, %RAX_LP /* Skip zero length. */ test %RDX_LP, %RDX_LP jz 2f add %RDX_LP, %RAX_LP jmp L(start_movsb) END (__mempcpy_erms) ENTRY (__memmove_chk_erms) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (__memmove_chk_erms) ENTRY (__memmove_erms) movq %rdi, %rax /* Skip zero length. */ test %RDX_LP, %RDX_LP jz 2f L(start_movsb): mov %RDX_LP, %RCX_LP cmp %RSI_LP, %RDI_LP jb 1f /* Source == destination is less common. */ je 2f lea (%rsi,%rcx), %RDX_LP cmp %RDX_LP, %RDI_LP jb L(movsb_backward) 1: rep movsb 2: ret L(movsb_backward): leaq -1(%rdi,%rcx), %rdi leaq -1(%rsi,%rcx), %rsi std rep movsb cld ret END (__memmove_erms) strong_alias (__memmove_erms, __memcpy_erms) strong_alias (__memmove_chk_erms, __memcpy_chk_erms) # endif # ifdef SHARED ENTRY (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned_erms)) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (MEMMOVE_CHK_SYMBOL (__mempcpy_chk, unaligned_erms)) # endif ENTRY (MEMMOVE_SYMBOL (__mempcpy, unaligned_erms)) mov %RDI_LP, %RAX_LP add %RDX_LP, %RAX_LP jmp L(start_erms) END (MEMMOVE_SYMBOL (__mempcpy, unaligned_erms)) # ifdef SHARED ENTRY (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned_erms)) cmp %RDX_LP, %RCX_LP jb HIDDEN_JUMPTARGET (__chk_fail) END (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned_erms)) # endif ENTRY_P2ALIGN (MEMMOVE_SYMBOL (__memmove, unaligned_erms), 6) movq %rdi, %rax L(start_erms): # ifdef __ILP32__ /* Clear the upper 32 bits. */ movl %edx, %edx # endif cmp $VEC_SIZE, %RDX_LP jb L(less_vec) /* Load regardless. */ VMOVU (%rsi), %VEC(0) cmp $(VEC_SIZE * 2), %RDX_LP ja L(movsb_more_2x_vec) /* From VEC and to 2 * VEC. No branch when size == VEC_SIZE. */ VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(1) VMOVU %VEC(0), (%rdi) VMOVU %VEC(1), -VEC_SIZE(%rdi, %rdx) L(return): # if VEC_SIZE > 16 ZERO_UPPER_VEC_REGISTERS_RETURN # else ret # endif #endif #if LARGE_MOV_SIZE /* If LARGE_MOV_SIZE this fits in the aligning bytes between the ENTRY block and L(less_vec). */ .p2align 4,, 8 L(between_4_7): /* From 4 to 7. No branch when size == 4. */ movl (%rsi), %ecx movl (%rsi, %rdx), %esi movl %ecx, (%rdi) movl %esi, (%rdi, %rdx) ret #endif .p2align 4 L(less_vec): /* Less than 1 VEC. */ #if VEC_SIZE != 16 && VEC_SIZE != 32 && VEC_SIZE != 64 # error Unsupported VEC_SIZE! #endif #if VEC_SIZE > 32 cmpl $32, %edx jae L(between_32_63) #endif #if VEC_SIZE > 16 cmpl $16, %edx jae L(between_16_31) #endif cmpl $8, %edx jae L(between_8_15) #if SMALL_MOV_SIZE cmpl $4, %edx #else subq $4, %rdx #endif jae L(between_4_7) cmpl $(1 - SMALL_SIZE_OFFSET), %edx jl L(copy_0) movb (%rsi), %cl je L(copy_1) movzwl (-2 + SMALL_SIZE_OFFSET)(%rsi, %rdx), %esi movw %si, (-2 + SMALL_SIZE_OFFSET)(%rdi, %rdx) L(copy_1): movb %cl, (%rdi) L(copy_0): ret #if SMALL_MOV_SIZE .p2align 4,, 8 L(between_4_7): /* From 4 to 7. No branch when size == 4. */ movl -4(%rsi, %rdx), %ecx movl (%rsi), %esi movl %ecx, -4(%rdi, %rdx) movl %esi, (%rdi) ret #endif #if VEC_SIZE > 16 /* From 16 to 31. No branch when size == 16. */ .p2align 4,, 8 L(between_16_31): vmovdqu (%rsi), %xmm0 vmovdqu -16(%rsi, %rdx), %xmm1 vmovdqu %xmm0, (%rdi) vmovdqu %xmm1, -16(%rdi, %rdx) /* No ymm registers have been touched. */ ret #endif #if VEC_SIZE > 32 .p2align 4,, 10 L(between_32_63): /* From 32 to 63. No branch when size == 32. */ VMOVU (%rsi), %YMM0 VMOVU -32(%rsi, %rdx), %YMM1 VMOVU %YMM0, (%rdi) VMOVU %YMM1, -32(%rdi, %rdx) VZEROUPPER_RETURN #endif .p2align 4,, 10 L(between_8_15): /* From 8 to 15. No branch when size == 8. */ movq -8(%rsi, %rdx), %rcx movq (%rsi), %rsi movq %rsi, (%rdi) movq %rcx, -8(%rdi, %rdx) ret .p2align 4,, 10 L(last_4x_vec): /* Copy from 2 * VEC + 1 to 4 * VEC, inclusively. */ /* VEC(0) and VEC(1) have already been loaded. */ VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(2) VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(3) VMOVU %VEC(0), (%rdi) VMOVU %VEC(1), VEC_SIZE(%rdi) VMOVU %VEC(2), -VEC_SIZE(%rdi, %rdx) VMOVU %VEC(3), -(VEC_SIZE * 2)(%rdi, %rdx) VZEROUPPER_RETURN .p2align 4 #if defined USE_MULTIARCH && IS_IN (libc) L(movsb_more_2x_vec): cmp __x86_rep_movsb_threshold(%rip), %RDX_LP ja L(movsb) #endif L(more_2x_vec): /* More than 2 * VEC and there may be overlap between destination and source. */ cmpq $(VEC_SIZE * 8), %rdx ja L(more_8x_vec) /* Load VEC(1) regardless. VEC(0) has already been loaded. */ VMOVU VEC_SIZE(%rsi), %VEC(1) cmpq $(VEC_SIZE * 4), %rdx jbe L(last_4x_vec) /* Copy from 4 * VEC + 1 to 8 * VEC, inclusively. */ VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(4) VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(5) VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VEC(6) VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VEC(7) VMOVU %VEC(0), (%rdi) VMOVU %VEC(1), VEC_SIZE(%rdi) VMOVU %VEC(2), (VEC_SIZE * 2)(%rdi) VMOVU %VEC(3), (VEC_SIZE * 3)(%rdi) VMOVU %VEC(4), -VEC_SIZE(%rdi, %rdx) VMOVU %VEC(5), -(VEC_SIZE * 2)(%rdi, %rdx) VMOVU %VEC(6), -(VEC_SIZE * 3)(%rdi, %rdx) VMOVU %VEC(7), -(VEC_SIZE * 4)(%rdi, %rdx) VZEROUPPER_RETURN .p2align 4,, 4 L(more_8x_vec): movq %rdi, %rcx subq %rsi, %rcx /* Go to backwards temporal copy if overlap no matter what as backward REP MOVSB is slow and we don't want to use NT stores if there is overlap. */ cmpq %rdx, %rcx /* L(more_8x_vec_backward_check_nop) checks for src == dst. */ jb L(more_8x_vec_backward_check_nop) /* Check if non-temporal move candidate. */ #if (defined USE_MULTIARCH || VEC_SIZE == 16) && IS_IN (libc) /* Check non-temporal store threshold. */ cmp __x86_shared_non_temporal_threshold(%rip), %RDX_LP ja L(large_memcpy_2x) #endif /* To reach this point there cannot be overlap and dst > src. So check for overlap and src > dst in which case correctness requires forward copy. Otherwise decide between backward/forward copy depending on address aliasing. */ /* Entry if rdx is greater than __x86_rep_movsb_stop_threshold but less than __x86_shared_non_temporal_threshold. */ L(more_8x_vec_check): /* rcx contains dst - src. Add back length (rdx). */ leaq (%rcx, %rdx), %r8 /* If r8 has different sign than rcx then there is overlap so we must do forward copy. */ xorq %rcx, %r8 /* Isolate just sign bit of r8. */ shrq $63, %r8 /* Get 4k difference dst - src. */ andl $(PAGE_SIZE - 256), %ecx /* If r8 is non-zero must do foward for correctness. Otherwise if ecx is non-zero there is 4k False Alaising so do backward copy. */ addl %r8d, %ecx jz L(more_8x_vec_backward) /* if rdx is greater than __x86_shared_non_temporal_threshold but there is overlap, or from short distance movsb. */ L(more_8x_vec_forward): /* Load first and last 4 * VEC to support overlapping addresses. */ /* First vec was already loaded into VEC(0). */ VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(5) VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(6) /* Save begining of dst. */ movq %rdi, %rcx /* Align dst to VEC_SIZE - 1. */ orq $(VEC_SIZE - 1), %rdi VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VEC(7) VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VEC(8) /* Subtract dst from src. Add back after dst aligned. */ subq %rcx, %rsi /* Finish aligning dst. */ incq %rdi /* Restore src adjusted with new value for aligned dst. */ addq %rdi, %rsi /* Store end of buffer minus tail in rdx. */ leaq (VEC_SIZE * -4)(%rcx, %rdx), %rdx /* Dont use multi-byte nop to align. */ .p2align 4,, 11 L(loop_4x_vec_forward): /* Copy 4 * VEC a time forward. */ VMOVU (%rsi), %VEC(1) VMOVU VEC_SIZE(%rsi), %VEC(2) VMOVU (VEC_SIZE * 2)(%rsi), %VEC(3) VMOVU (VEC_SIZE * 3)(%rsi), %VEC(4) subq $-(VEC_SIZE * 4), %rsi VMOVA %VEC(1), (%rdi) VMOVA %VEC(2), VEC_SIZE(%rdi) VMOVA %VEC(3), (VEC_SIZE * 2)(%rdi) VMOVA %VEC(4), (VEC_SIZE * 3)(%rdi) subq $-(VEC_SIZE * 4), %rdi cmpq %rdi, %rdx ja L(loop_4x_vec_forward) /* Store the last 4 * VEC. */ VMOVU %VEC(5), (VEC_SIZE * 3)(%rdx) VMOVU %VEC(6), (VEC_SIZE * 2)(%rdx) VMOVU %VEC(7), VEC_SIZE(%rdx) VMOVU %VEC(8), (%rdx) /* Store the first VEC. */ VMOVU %VEC(0), (%rcx) /* Keep L(nop_backward) target close to jmp for 2-byte encoding. */ L(nop_backward): VZEROUPPER_RETURN .p2align 4,, 8 L(more_8x_vec_backward_check_nop): /* rcx contains dst - src. Test for dst == src to skip all of memmove. */ testq %rcx, %rcx jz L(nop_backward) L(more_8x_vec_backward): /* Load the first 4 * VEC and last VEC to support overlapping addresses. */ /* First vec was also loaded into VEC(0). */ VMOVU VEC_SIZE(%rsi), %VEC(5) VMOVU (VEC_SIZE * 2)(%rsi), %VEC(6) /* Begining of region for 4x backward copy stored in rcx. */ leaq (VEC_SIZE * -4 + -1)(%rdi, %rdx), %rcx VMOVU (VEC_SIZE * 3)(%rsi), %VEC(7) VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(8) /* Subtract dst from src. Add back after dst aligned. */ subq %rdi, %rsi /* Align dst. */ andq $-(VEC_SIZE), %rcx /* Restore src. */ addq %rcx, %rsi /* Don't use multi-byte nop to align. */ .p2align 4,, 11 L(loop_4x_vec_backward): /* Copy 4 * VEC a time backward. */ VMOVU (VEC_SIZE * 3)(%rsi), %VEC(1) VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) VMOVU (VEC_SIZE * 1)(%rsi), %VEC(3) VMOVU (VEC_SIZE * 0)(%rsi), %VEC(4) addq $(VEC_SIZE * -4), %rsi VMOVA %VEC(1), (VEC_SIZE * 3)(%rcx) VMOVA %VEC(2), (VEC_SIZE * 2)(%rcx) VMOVA %VEC(3), (VEC_SIZE * 1)(%rcx) VMOVA %VEC(4), (VEC_SIZE * 0)(%rcx) addq $(VEC_SIZE * -4), %rcx cmpq %rcx, %rdi jb L(loop_4x_vec_backward) /* Store the first 4 * VEC. */ VMOVU %VEC(0), (%rdi) VMOVU %VEC(5), VEC_SIZE(%rdi) VMOVU %VEC(6), (VEC_SIZE * 2)(%rdi) VMOVU %VEC(7), (VEC_SIZE * 3)(%rdi) /* Store the last VEC. */ VMOVU %VEC(8), -VEC_SIZE(%rdx, %rdi) VZEROUPPER_RETURN #if defined USE_MULTIARCH && IS_IN (libc) /* L(skip_short_movsb_check) is only used with ERMS. Not for FSRM. */ .p2align 5,, 16 # if ALIGN_MOVSB L(skip_short_movsb_check): # if MOVSB_ALIGN_TO > VEC_SIZE VMOVU VEC_SIZE(%rsi), %VEC(1) # endif # if MOVSB_ALIGN_TO > (VEC_SIZE * 2) # error Unsupported MOVSB_ALIGN_TO # endif /* If CPU does not have FSRM two options for aligning. Align src if dst and src 4k alias. Otherwise align dst. */ testl $(PAGE_SIZE - 512), %ecx jnz L(movsb_align_dst) /* Fall through. dst and src 4k alias. It's better to align src here because the bottleneck will be loads dues to the false dependency on dst. */ /* rcx already has dst - src. */ movq %rcx, %r9 /* Add src to len. Subtract back after src aligned. -1 because src is initially aligned to MOVSB_ALIGN_TO - 1. */ leaq -1(%rsi, %rdx), %rcx /* Inclusively align src to MOVSB_ALIGN_TO - 1. */ orq $(MOVSB_ALIGN_TO - 1), %rsi /* Restore dst and len adjusted with new values for aligned dst. */ leaq 1(%rsi, %r9), %rdi subq %rsi, %rcx /* Finish aligning src. */ incq %rsi rep movsb VMOVU %VEC(0), (%r8) # if MOVSB_ALIGN_TO > VEC_SIZE VMOVU %VEC(1), VEC_SIZE(%r8) # endif VZEROUPPER_RETURN # endif .p2align 4,, 12 L(movsb): movq %rdi, %rcx subq %rsi, %rcx /* Go to backwards temporal copy if overlap no matter what as backward REP MOVSB is slow and we don't want to use NT stores if there is overlap. */ cmpq %rdx, %rcx /* L(more_8x_vec_backward_check_nop) checks for src == dst. */ jb L(more_8x_vec_backward_check_nop) # if ALIGN_MOVSB /* Save dest for storing aligning VECs later. */ movq %rdi, %r8 # endif /* If above __x86_rep_movsb_stop_threshold most likely is candidate for NT moves aswell. */ cmp __x86_rep_movsb_stop_threshold(%rip), %RDX_LP jae L(large_memcpy_2x_check) # if AVOID_SHORT_DISTANCE_REP_MOVSB || ALIGN_MOVSB /* Only avoid short movsb if CPU has FSRM. */ testl $X86_STRING_CONTROL_AVOID_SHORT_DISTANCE_REP_MOVSB, __x86_string_control(%rip) jz L(skip_short_movsb_check) # if AVOID_SHORT_DISTANCE_REP_MOVSB /* Avoid "rep movsb" if RCX, the distance between source and destination, is N*4GB + [1..63] with N >= 0. */ /* ecx contains dst - src. Early check for backward copy conditions means only case of slow movsb with src = dst + [0, 63] is ecx in [-63, 0]. Use unsigned comparison with -64 check for that case. */ cmpl $-64, %ecx ja L(more_8x_vec_forward) # endif # endif # if ALIGN_MOVSB # if MOVSB_ALIGN_TO > VEC_SIZE VMOVU VEC_SIZE(%rsi), %VEC(1) # endif # if MOVSB_ALIGN_TO > (VEC_SIZE * 2) # error Unsupported MOVSB_ALIGN_TO # endif /* Fall through means cpu has FSRM. In that case exclusively align destination. */ L(movsb_align_dst): /* Subtract dst from src. Add back after dst aligned. */ subq %rdi, %rsi /* Exclusively align dst to MOVSB_ALIGN_TO (64). */ addq $(MOVSB_ALIGN_TO - 1), %rdi /* Add dst to len. Subtract back after dst aligned. */ leaq (%r8, %rdx), %rcx /* Finish aligning dst. */ andq $-(MOVSB_ALIGN_TO), %rdi /* Restore src and len adjusted with new values for aligned dst. */ addq %rdi, %rsi subq %rdi, %rcx rep movsb /* Store VECs loaded for aligning. */ VMOVU %VEC(0), (%r8) # if MOVSB_ALIGN_TO > VEC_SIZE VMOVU %VEC(1), VEC_SIZE(%r8) # endif VZEROUPPER_RETURN # else /* !ALIGN_MOVSB. */ L(skip_short_movsb_check): mov %RDX_LP, %RCX_LP rep movsb ret # endif #endif .p2align 4,, 10 #if (defined USE_MULTIARCH || VEC_SIZE == 16) && IS_IN (libc) L(large_memcpy_2x_check): cmp __x86_rep_movsb_threshold(%rip), %RDX_LP jb L(more_8x_vec_check) L(large_memcpy_2x): /* To reach this point it is impossible for dst > src and overlap. Remaining to check is src > dst and overlap. rcx already contains dst - src. Negate rcx to get src - dst. If length > rcx then there is overlap and forward copy is best. */ negq %rcx cmpq %rcx, %rdx ja L(more_8x_vec_forward) /* Cache align destination. First store the first 64 bytes then adjust alignments. */ /* First vec was also loaded into VEC(0). */ # if VEC_SIZE < 64 VMOVU VEC_SIZE(%rsi), %VEC(1) # if VEC_SIZE < 32 VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) # endif # endif VMOVU %VEC(0), (%rdi) # if VEC_SIZE < 64 VMOVU %VEC(1), VEC_SIZE(%rdi) # if VEC_SIZE < 32 VMOVU %VEC(2), (VEC_SIZE * 2)(%rdi) VMOVU %VEC(3), (VEC_SIZE * 3)(%rdi) # endif # endif /* Adjust source, destination, and size. */ movq %rdi, %r8 andq $63, %r8 /* Get the negative of offset for alignment. */ subq $64, %r8 /* Adjust source. */ subq %r8, %rsi /* Adjust destination which should be aligned now. */ subq %r8, %rdi /* Adjust length. */ addq %r8, %rdx /* Test if source and destination addresses will alias. If they do the larger pipeline in large_memcpy_4x alleviated the performance drop. */ /* ecx contains -(dst - src). not ecx will return dst - src - 1 which works for testing aliasing. */ notl %ecx testl $(PAGE_SIZE - VEC_SIZE * 8), %ecx jz L(large_memcpy_4x) movq %rdx, %r10 shrq $LOG_4X_MEMCPY_THRESH, %r10 cmp __x86_shared_non_temporal_threshold(%rip), %r10 jae L(large_memcpy_4x) /* edx will store remainder size for copying tail. */ andl $(PAGE_SIZE * 2 - 1), %edx /* r10 stores outer loop counter. */ shrq $((LOG_PAGE_SIZE + 1) - LOG_4X_MEMCPY_THRESH), %r10 /* Copy 4x VEC at a time from 2 pages. */ .p2align 4 L(loop_large_memcpy_2x_outer): /* ecx stores inner loop counter. */ movl $(PAGE_SIZE / LARGE_LOAD_SIZE), %ecx L(loop_large_memcpy_2x_inner): PREFETCH_ONE_SET(1, (%rsi), PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET(1, (%rsi), PREFETCHED_LOAD_SIZE * 2) PREFETCH_ONE_SET(1, (%rsi), PAGE_SIZE + PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET(1, (%rsi), PAGE_SIZE + PREFETCHED_LOAD_SIZE * 2) /* Load vectors from rsi. */ LOAD_ONE_SET((%rsi), 0, %VEC(0), %VEC(1), %VEC(2), %VEC(3)) LOAD_ONE_SET((%rsi), PAGE_SIZE, %VEC(4), %VEC(5), %VEC(6), %VEC(7)) subq $-LARGE_LOAD_SIZE, %rsi /* Non-temporal store vectors to rdi. */ STORE_ONE_SET((%rdi), 0, %VEC(0), %VEC(1), %VEC(2), %VEC(3)) STORE_ONE_SET((%rdi), PAGE_SIZE, %VEC(4), %VEC(5), %VEC(6), %VEC(7)) subq $-LARGE_LOAD_SIZE, %rdi decl %ecx jnz L(loop_large_memcpy_2x_inner) addq $PAGE_SIZE, %rdi addq $PAGE_SIZE, %rsi decq %r10 jne L(loop_large_memcpy_2x_outer) sfence /* Check if only last 4 loads are needed. */ cmpl $(VEC_SIZE * 4), %edx jbe L(large_memcpy_2x_end) /* Handle the last 2 * PAGE_SIZE bytes. */ L(loop_large_memcpy_2x_tail): /* Copy 4 * VEC a time forward with non-temporal stores. */ PREFETCH_ONE_SET (1, (%rsi), PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET (1, (%rdi), PREFETCHED_LOAD_SIZE) VMOVU (%rsi), %VEC(0) VMOVU VEC_SIZE(%rsi), %VEC(1) VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) subq $-(VEC_SIZE * 4), %rsi addl $-(VEC_SIZE * 4), %edx VMOVA %VEC(0), (%rdi) VMOVA %VEC(1), VEC_SIZE(%rdi) VMOVA %VEC(2), (VEC_SIZE * 2)(%rdi) VMOVA %VEC(3), (VEC_SIZE * 3)(%rdi) subq $-(VEC_SIZE * 4), %rdi cmpl $(VEC_SIZE * 4), %edx ja L(loop_large_memcpy_2x_tail) L(large_memcpy_2x_end): /* Store the last 4 * VEC. */ VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VEC(0) VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VEC(1) VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(2) VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(3) VMOVU %VEC(0), -(VEC_SIZE * 4)(%rdi, %rdx) VMOVU %VEC(1), -(VEC_SIZE * 3)(%rdi, %rdx) VMOVU %VEC(2), -(VEC_SIZE * 2)(%rdi, %rdx) VMOVU %VEC(3), -VEC_SIZE(%rdi, %rdx) VZEROUPPER_RETURN .p2align 4 L(large_memcpy_4x): movq %rdx, %r10 /* edx will store remainder size for copying tail. */ andl $(PAGE_SIZE * 4 - 1), %edx /* r10 stores outer loop counter. */ shrq $(LOG_PAGE_SIZE + 2), %r10 /* Copy 4x VEC at a time from 4 pages. */ .p2align 4 L(loop_large_memcpy_4x_outer): /* ecx stores inner loop counter. */ movl $(PAGE_SIZE / LARGE_LOAD_SIZE), %ecx L(loop_large_memcpy_4x_inner): /* Only one prefetch set per page as doing 4 pages give more time for prefetcher to keep up. */ PREFETCH_ONE_SET(1, (%rsi), PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET(1, (%rsi), PAGE_SIZE + PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET(1, (%rsi), PAGE_SIZE * 2 + PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET(1, (%rsi), PAGE_SIZE * 3 + PREFETCHED_LOAD_SIZE) /* Load vectors from rsi. */ LOAD_ONE_SET((%rsi), 0, %VEC(0), %VEC(1), %VEC(2), %VEC(3)) LOAD_ONE_SET((%rsi), PAGE_SIZE, %VEC(4), %VEC(5), %VEC(6), %VEC(7)) LOAD_ONE_SET((%rsi), PAGE_SIZE * 2, %VEC(8), %VEC(9), %VEC(10), %VEC(11)) LOAD_ONE_SET((%rsi), PAGE_SIZE * 3, %VEC(12), %VEC(13), %VEC(14), %VEC(15)) subq $-LARGE_LOAD_SIZE, %rsi /* Non-temporal store vectors to rdi. */ STORE_ONE_SET((%rdi), 0, %VEC(0), %VEC(1), %VEC(2), %VEC(3)) STORE_ONE_SET((%rdi), PAGE_SIZE, %VEC(4), %VEC(5), %VEC(6), %VEC(7)) STORE_ONE_SET((%rdi), PAGE_SIZE * 2, %VEC(8), %VEC(9), %VEC(10), %VEC(11)) STORE_ONE_SET((%rdi), PAGE_SIZE * 3, %VEC(12), %VEC(13), %VEC(14), %VEC(15)) subq $-LARGE_LOAD_SIZE, %rdi decl %ecx jnz L(loop_large_memcpy_4x_inner) addq $(PAGE_SIZE * 3), %rdi addq $(PAGE_SIZE * 3), %rsi decq %r10 jne L(loop_large_memcpy_4x_outer) sfence /* Check if only last 4 loads are needed. */ cmpl $(VEC_SIZE * 4), %edx jbe L(large_memcpy_4x_end) /* Handle the last 4 * PAGE_SIZE bytes. */ L(loop_large_memcpy_4x_tail): /* Copy 4 * VEC a time forward with non-temporal stores. */ PREFETCH_ONE_SET (1, (%rsi), PREFETCHED_LOAD_SIZE) PREFETCH_ONE_SET (1, (%rdi), PREFETCHED_LOAD_SIZE) VMOVU (%rsi), %VEC(0) VMOVU VEC_SIZE(%rsi), %VEC(1) VMOVU (VEC_SIZE * 2)(%rsi), %VEC(2) VMOVU (VEC_SIZE * 3)(%rsi), %VEC(3) subq $-(VEC_SIZE * 4), %rsi addl $-(VEC_SIZE * 4), %edx VMOVA %VEC(0), (%rdi) VMOVA %VEC(1), VEC_SIZE(%rdi) VMOVA %VEC(2), (VEC_SIZE * 2)(%rdi) VMOVA %VEC(3), (VEC_SIZE * 3)(%rdi) subq $-(VEC_SIZE * 4), %rdi cmpl $(VEC_SIZE * 4), %edx ja L(loop_large_memcpy_4x_tail) L(large_memcpy_4x_end): /* Store the last 4 * VEC. */ VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %VEC(0) VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %VEC(1) VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %VEC(2) VMOVU -VEC_SIZE(%rsi, %rdx), %VEC(3) VMOVU %VEC(0), -(VEC_SIZE * 4)(%rdi, %rdx) VMOVU %VEC(1), -(VEC_SIZE * 3)(%rdi, %rdx) VMOVU %VEC(2), -(VEC_SIZE * 2)(%rdi, %rdx) VMOVU %VEC(3), -VEC_SIZE(%rdi, %rdx) VZEROUPPER_RETURN #endif END (MEMMOVE_SYMBOL (__memmove, unaligned_erms)) #if IS_IN (libc) # ifdef USE_MULTIARCH strong_alias (MEMMOVE_SYMBOL (__memmove, unaligned_erms), MEMMOVE_SYMBOL (__memcpy, unaligned_erms)) # ifdef SHARED strong_alias (MEMMOVE_SYMBOL (__memmove_chk, unaligned_erms), MEMMOVE_SYMBOL (__memcpy_chk, unaligned_erms)) # endif # endif # ifdef SHARED strong_alias (MEMMOVE_CHK_SYMBOL (__memmove_chk, unaligned), MEMMOVE_CHK_SYMBOL (__memcpy_chk, unaligned)) # endif #endif strong_alias (MEMMOVE_SYMBOL (__memmove, unaligned), MEMCPY_SYMBOL (__memcpy, unaligned))