/* memcmp/wmemcmp optimized with 256-bit EVEX instructions. Copyright (C) 2021 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #if IS_IN (libc) /* memcmp/wmemcmp is implemented as: 1. Use ymm vector compares when possible. The only case where vector compares is not possible for when size < CHAR_PER_VEC and loading from either s1 or s2 would cause a page cross. 2. For size from 2 to 7 bytes on page cross, load as big endian with movbe and bswap to avoid branches. 3. Use xmm vector compare when size >= 4 bytes for memcmp or size >= 8 bytes for wmemcmp. 4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a to check for early mismatches. Only do this if its guranteed the work is not wasted. 5. If size is 8 * VEC_SIZE or less, unroll the loop. 6. Compare 4 * VEC_SIZE at a time with the aligned first memory area. 7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less. 8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less. 9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less. */ # include # ifndef MEMCMP # define MEMCMP __memcmp_evex_movbe # endif # define VMOVU vmovdqu64 # ifdef USE_AS_WMEMCMP # define CHAR_SIZE 4 # define VPCMP vpcmpd # else # define CHAR_SIZE 1 # define VPCMP vpcmpub # endif # define VEC_SIZE 32 # define PAGE_SIZE 4096 # define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE) # define XMM0 xmm16 # define XMM1 xmm17 # define XMM2 xmm18 # define YMM0 ymm16 # define XMM1 xmm17 # define XMM2 xmm18 # define YMM1 ymm17 # define YMM2 ymm18 # define YMM3 ymm19 # define YMM4 ymm20 # define YMM5 ymm21 # define YMM6 ymm22 /* Warning! wmemcmp has to use SIGNED comparison for elements. memcmp has to use UNSIGNED comparison for elemnts. */ .section .text.evex,"ax",@progbits ENTRY (MEMCMP) # ifdef __ILP32__ /* Clear the upper 32 bits. */ movl %edx, %edx # endif cmp $CHAR_PER_VEC, %RDX_LP jb L(less_vec) /* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */ VMOVU (%rsi), %YMM1 /* Use compare not equals to directly check for mismatch. */ VPCMP $4, (%rdi), %YMM1, %k1 kmovd %k1, %eax /* NB: eax must be destination register if going to L(return_vec_[0,2]). For L(return_vec_3 destination register must be ecx. */ testl %eax, %eax jnz L(return_vec_0) cmpq $(CHAR_PER_VEC * 2), %rdx jbe L(last_1x_vec) /* Check second VEC no matter what. */ VMOVU VEC_SIZE(%rsi), %YMM2 VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_1) /* Less than 4 * VEC. */ cmpq $(CHAR_PER_VEC * 4), %rdx jbe L(last_2x_vec) /* Check third and fourth VEC no matter what. */ VMOVU (VEC_SIZE * 2)(%rsi), %YMM3 VPCMP $4, (VEC_SIZE * 2)(%rdi), %YMM3, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_2) VMOVU (VEC_SIZE * 3)(%rsi), %YMM4 VPCMP $4, (VEC_SIZE * 3)(%rdi), %YMM4, %k1 kmovd %k1, %ecx testl %ecx, %ecx jnz L(return_vec_3) /* Zero YMM0. 4x VEC reduction is done with vpxor + vtern so compare with zero to get a mask is needed. */ vpxorq %XMM0, %XMM0, %XMM0 /* Go to 4x VEC loop. */ cmpq $(CHAR_PER_VEC * 8), %rdx ja L(more_8x_vec) /* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any branches. */ /* Load first two VEC from s2 before adjusting addresses. */ VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %YMM1 VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %YMM2 leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi /* Wait to load from s1 until addressed adjust due to unlamination of microfusion with complex address mode. */ /* vpxor will be all 0s if s1 and s2 are equal. Otherwise it will have some 1s. */ vpxorq (%rdi), %YMM1, %YMM1 vpxorq (VEC_SIZE)(%rdi), %YMM2, %YMM2 VMOVU (VEC_SIZE * 2)(%rsi), %YMM3 vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3 /* Or together YMM1, YMM2, and YMM3 into YMM3. */ vpternlogd $0xfe, %YMM1, %YMM2, %YMM3 VMOVU (VEC_SIZE * 3)(%rsi), %YMM4 /* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with YMM4 while oring with YMM3. Result is stored in YMM4. */ vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %YMM3, %YMM4 /* Compare YMM4 with 0. If any 1s s1 and s2 don't match. */ VPCMP $4, %YMM4, %YMM0, %k1 kmovd %k1, %ecx testl %ecx, %ecx jnz L(return_vec_0_1_2_3) /* NB: eax must be zero to reach here. */ ret /* NB: aligning 32 here allows for the rest of the jump targets to be tuned for 32 byte alignment. Most important this ensures the L(more_8x_vec) loop is 32 byte aligned. */ .p2align 5 L(less_vec): /* Check if one or less CHAR. This is necessary for size = 0 but is also faster for size = CHAR_SIZE. */ cmpl $1, %edx jbe L(one_or_less) /* Check if loading one VEC from either s1 or s2 could cause a page cross. This can have false positives but is by far the fastest method. */ movl %edi, %eax orl %esi, %eax andl $(PAGE_SIZE - 1), %eax cmpl $(PAGE_SIZE - VEC_SIZE), %eax jg L(page_cross_less_vec) /* No page cross possible. */ VMOVU (%rsi), %YMM2 VPCMP $4, (%rdi), %YMM2, %k1 kmovd %k1, %eax /* Create mask in ecx for potentially in bound matches. */ bzhil %edx, %eax, %eax jnz L(return_vec_0) ret .p2align 4 L(return_vec_0): tzcntl %eax, %eax # ifdef USE_AS_WMEMCMP movl (%rdi, %rax, CHAR_SIZE), %ecx xorl %edx, %edx cmpl (%rsi, %rax, CHAR_SIZE), %ecx /* NB: no partial register stall here because xorl zero idiom above. */ setg %dl leal -1(%rdx, %rdx), %eax # else movzbl (%rsi, %rax), %ecx movzbl (%rdi, %rax), %eax subl %ecx, %eax # endif ret /* NB: No p2align necessary. Alignment % 16 is naturally 1 which is good enough for a target not in a loop. */ L(return_vec_1): tzcntl %eax, %eax # ifdef USE_AS_WMEMCMP movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx xorl %edx, %edx cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx setg %dl leal -1(%rdx, %rdx), %eax # else movzbl VEC_SIZE(%rsi, %rax), %ecx movzbl VEC_SIZE(%rdi, %rax), %eax subl %ecx, %eax # endif ret /* NB: No p2align necessary. Alignment % 16 is naturally 2 which is good enough for a target not in a loop. */ L(return_vec_2): tzcntl %eax, %eax # ifdef USE_AS_WMEMCMP movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx xorl %edx, %edx cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx setg %dl leal -1(%rdx, %rdx), %eax # else movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax subl %ecx, %eax # endif ret .p2align 4 L(8x_return_vec_0_1_2_3): /* Returning from L(more_8x_vec) requires restoring rsi. */ addq %rdi, %rsi L(return_vec_0_1_2_3): VPCMP $4, %YMM1, %YMM0, %k0 kmovd %k0, %eax testl %eax, %eax jnz L(return_vec_0) VPCMP $4, %YMM2, %YMM0, %k0 kmovd %k0, %eax testl %eax, %eax jnz L(return_vec_1) VPCMP $4, %YMM3, %YMM0, %k0 kmovd %k0, %eax testl %eax, %eax jnz L(return_vec_2) L(return_vec_3): tzcntl %ecx, %ecx # ifdef USE_AS_WMEMCMP movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax xorl %edx, %edx cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax setg %dl leal -1(%rdx, %rdx), %eax # else movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx subl %ecx, %eax # endif ret .p2align 4 L(more_8x_vec): /* Set end of s1 in rdx. */ leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx /* rsi stores s2 - s1. This allows loop to only update one pointer. */ subq %rdi, %rsi /* Align s1 pointer. */ andq $-VEC_SIZE, %rdi /* Adjust because first 4x vec where check already. */ subq $-(VEC_SIZE * 4), %rdi .p2align 4 L(loop_4x_vec): VMOVU (%rsi, %rdi), %YMM1 vpxorq (%rdi), %YMM1, %YMM1 VMOVU VEC_SIZE(%rsi, %rdi), %YMM2 vpxorq VEC_SIZE(%rdi), %YMM2, %YMM2 VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3 vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3 vpternlogd $0xfe, %YMM1, %YMM2, %YMM3 VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4 vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %YMM3, %YMM4 VPCMP $4, %YMM4, %YMM0, %k1 kmovd %k1, %ecx testl %ecx, %ecx jnz L(8x_return_vec_0_1_2_3) subq $-(VEC_SIZE * 4), %rdi cmpq %rdx, %rdi jb L(loop_4x_vec) subq %rdx, %rdi /* rdi has 4 * VEC_SIZE - remaining length. */ cmpl $(VEC_SIZE * 3), %edi jae L(8x_last_1x_vec) /* Load regardless of branch. */ VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3 cmpl $(VEC_SIZE * 2), %edi jae L(8x_last_2x_vec) VMOVU (%rsi, %rdx), %YMM1 vpxorq (%rdx), %YMM1, %YMM1 VMOVU VEC_SIZE(%rsi, %rdx), %YMM2 vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2 vpxorq (VEC_SIZE * 2)(%rdx), %YMM3, %YMM3 vpternlogd $0xfe, %YMM1, %YMM2, %YMM3 VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4 vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %YMM3, %YMM4 VPCMP $4, %YMM4, %YMM0, %k1 kmovd %k1, %ecx /* Restore s1 pointer to rdi. */ movq %rdx, %rdi testl %ecx, %ecx jnz L(8x_return_vec_0_1_2_3) /* NB: eax must be zero to reach here. */ ret /* Only entry is from L(more_8x_vec). */ .p2align 4 L(8x_last_2x_vec): VPCMP $4, (VEC_SIZE * 2)(%rdx), %YMM3, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(8x_return_vec_2) /* Naturally aligned to 16 bytes. */ L(8x_last_1x_vec): VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM1 VPCMP $4, (VEC_SIZE * 3)(%rdx), %YMM1, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(8x_return_vec_3) ret .p2align 4 L(last_2x_vec): /* Check second to last VEC. */ VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %YMM1 VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_1_end) /* Check last VEC. */ .p2align 4 L(last_1x_vec): VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %YMM1 VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_0_end) ret .p2align 4 L(8x_return_vec_2): subq $VEC_SIZE, %rdx L(8x_return_vec_3): tzcntl %eax, %eax # ifdef USE_AS_WMEMCMP leaq (%rdx, %rax, CHAR_SIZE), %rax movl (VEC_SIZE * 3)(%rax), %ecx xorl %edx, %edx cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx setg %dl leal -1(%rdx, %rdx), %eax # else addq %rdx, %rax movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx movzbl (VEC_SIZE * 3)(%rax), %eax subl %ecx, %eax # endif ret .p2align 4 L(return_vec_0_end): tzcntl %eax, %eax addl %edx, %eax # ifdef USE_AS_WMEMCMP movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx xorl %edx, %edx cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx setg %dl leal -1(%rdx, %rdx), %eax # else movzbl -VEC_SIZE(%rsi, %rax), %ecx movzbl -VEC_SIZE(%rdi, %rax), %eax subl %ecx, %eax # endif ret .p2align 4 L(return_vec_1_end): tzcntl %eax, %eax addl %edx, %eax # ifdef USE_AS_WMEMCMP movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx xorl %edx, %edx cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx setg %dl leal -1(%rdx, %rdx), %eax # else movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax subl %ecx, %eax # endif ret .p2align 4 L(page_cross_less_vec): /* if USE_AS_WMEMCMP it can only be 0, 4, 8, 12, 16, 20, 24, 28 bytes. */ cmpl $(16 / CHAR_SIZE), %edx jae L(between_16_31) # ifndef USE_AS_WMEMCMP cmpl $8, %edx jae L(between_8_15) cmpl $4, %edx jae L(between_4_7) L(between_2_3): /* Load as big endian to avoid branches. */ movzwl (%rdi), %eax movzwl (%rsi), %ecx shll $8, %eax shll $8, %ecx bswap %eax bswap %ecx movzbl -1(%rdi, %rdx), %edi movzbl -1(%rsi, %rdx), %esi orl %edi, %eax orl %esi, %ecx /* Subtraction is okay because the upper 8 bits are zero. */ subl %ecx, %eax ret .p2align 4 L(one_or_less): jb L(zero) movzbl (%rsi), %ecx movzbl (%rdi), %eax subl %ecx, %eax ret .p2align 4 L(between_8_15): # endif /* If USE_AS_WMEMCMP fall through into 8-15 byte case. */ vmovq (%rdi), %XMM1 vmovq (%rsi), %XMM2 VPCMP $4, %XMM1, %XMM2, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_0) /* Use overlapping loads to avoid branches. */ leaq -8(%rdi, %rdx, CHAR_SIZE), %rdi leaq -8(%rsi, %rdx, CHAR_SIZE), %rsi vmovq (%rdi), %XMM1 vmovq (%rsi), %XMM2 VPCMP $4, %XMM1, %XMM2, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_0) ret .p2align 4 L(zero): xorl %eax, %eax ret .p2align 4 L(between_16_31): /* From 16 to 31 bytes. No branch when size == 16. */ VMOVU (%rsi), %XMM2 VPCMP $4, (%rdi), %XMM2, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_0) /* Use overlapping loads to avoid branches. */ VMOVU -16(%rsi, %rdx, CHAR_SIZE), %XMM2 leaq -16(%rdi, %rdx, CHAR_SIZE), %rdi leaq -16(%rsi, %rdx, CHAR_SIZE), %rsi VPCMP $4, (%rdi), %XMM2, %k1 kmovd %k1, %eax testl %eax, %eax jnz L(return_vec_0) ret # ifdef USE_AS_WMEMCMP .p2align 4 L(one_or_less): jb L(zero) movl (%rdi), %ecx xorl %edx, %edx cmpl (%rsi), %ecx je L(zero) setg %dl leal -1(%rdx, %rdx), %eax ret # else .p2align 4 L(between_4_7): /* Load as big endian with overlapping movbe to avoid branches. */ movbe (%rdi), %eax movbe (%rsi), %ecx shlq $32, %rax shlq $32, %rcx movbe -4(%rdi, %rdx), %edi movbe -4(%rsi, %rdx), %esi orq %rdi, %rax orq %rsi, %rcx subq %rcx, %rax jz L(zero_4_7) sbbl %eax, %eax orl $1, %eax L(zero_4_7): ret # endif END (MEMCMP) #endif