/* memchr/wmemchr optimized with 256-bit EVEX instructions.
Copyright (C) 2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#if IS_IN (libc)
# include
# ifndef MEMCHR
# define MEMCHR __memchr_evex
# endif
# ifdef USE_AS_WMEMCHR
# define VPBROADCAST vpbroadcastd
# define VPMINU vpminud
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define CHAR_SIZE 4
# else
# define VPBROADCAST vpbroadcastb
# define VPMINU vpminub
# define VPCMP vpcmpb
# define VPCMPEQ vpcmpeqb
# define CHAR_SIZE 1
# endif
/* In the 4x loop the RTM and non-RTM versions have data pointer
off by VEC_SIZE * 4 with RTM version being VEC_SIZE * 4 greater.
This is represented by BASE_OFFSET. As well because the RTM
version uses vpcmp which stores a bit per element compared where
the non-RTM version uses vpcmpeq which stores a bit per byte
compared RET_SCALE of CHAR_SIZE is only relevant for the RTM
version. */
# ifdef USE_IN_RTM
# define VZEROUPPER
# define BASE_OFFSET (VEC_SIZE * 4)
# define RET_SCALE CHAR_SIZE
# else
# define VZEROUPPER vzeroupper
# define BASE_OFFSET 0
# define RET_SCALE 1
# endif
/* In the return from 4x loop memchr and rawmemchr versions have
data pointers off by VEC_SIZE * 4 with memchr version being
VEC_SIZE * 4 greater. */
# ifdef USE_AS_RAWMEMCHR
# define RET_OFFSET (BASE_OFFSET - (VEC_SIZE * 4))
# define RAW_PTR_REG rcx
# define ALGN_PTR_REG rdi
# else
# define RET_OFFSET BASE_OFFSET
# define RAW_PTR_REG rdi
# define ALGN_PTR_REG rcx
# endif
# define XMMZERO xmm23
# define YMMZERO ymm23
# define XMMMATCH xmm16
# define YMMMATCH ymm16
# define YMM1 ymm17
# define YMM2 ymm18
# define YMM3 ymm19
# define YMM4 ymm20
# define YMM5 ymm21
# define YMM6 ymm22
# ifndef SECTION
# define SECTION(p) p##.evex
# endif
# define VEC_SIZE 32
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
# define PAGE_SIZE 4096
.section SECTION(.text),"ax",@progbits
ENTRY (MEMCHR)
# ifndef USE_AS_RAWMEMCHR
/* Check for zero length. */
test %RDX_LP, %RDX_LP
jz L(zero)
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %edx, %edx
# endif
# endif
/* Broadcast CHAR to YMMMATCH. */
VPBROADCAST %esi, %YMMMATCH
/* Check if we may cross page boundary with one vector load. */
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. */
VPCMP $0, (%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
# ifndef USE_AS_RAWMEMCHR
/* If length < CHAR_PER_VEC handle special. */
cmpq $CHAR_PER_VEC, %rdx
jbe L(first_vec_x0)
# endif
testl %eax, %eax
jz L(aligned_more)
tzcntl %eax, %eax
# ifdef USE_AS_WMEMCHR
/* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
ret
# ifndef USE_AS_RAWMEMCHR
L(zero):
xorl %eax, %eax
ret
.p2align 5
L(first_vec_x0):
/* Check if first match was before length. */
tzcntl %eax, %eax
xorl %ecx, %ecx
cmpl %eax, %edx
leaq (%rdi, %rax, CHAR_SIZE), %rax
cmovle %rcx, %rax
ret
# else
/* NB: first_vec_x0 is 17 bytes which will leave
cross_page_boundary (which is relatively cold) close enough
to ideal alignment. So only realign L(cross_page_boundary) if
rawmemchr. */
.p2align 4
# endif
L(cross_page_boundary):
/* Save pointer before aligning as its original value is
necessary for computer return address if byte is found or
adjusting length if it is not and this is memchr. */
movq %rdi, %rcx
/* Align data to VEC_SIZE. ALGN_PTR_REG is rcx for memchr and rdi
for rawmemchr. */
andq $-VEC_SIZE, %ALGN_PTR_REG
VPCMP $0, (%ALGN_PTR_REG), %YMMMATCH, %k0
kmovd %k0, %r8d
# ifdef USE_AS_WMEMCHR
/* NB: Divide shift count by 4 since each bit in K0 represent 4
bytes. */
sarl $2, %eax
# endif
# ifndef USE_AS_RAWMEMCHR
movl $(PAGE_SIZE / CHAR_SIZE), %esi
subl %eax, %esi
# endif
# ifdef USE_AS_WMEMCHR
andl $(CHAR_PER_VEC - 1), %eax
# endif
/* Remove the leading bytes. */
sarxl %eax, %r8d, %eax
# ifndef USE_AS_RAWMEMCHR
/* Check the end of data. */
cmpq %rsi, %rdx
jbe L(first_vec_x0)
# endif
testl %eax, %eax
jz L(cross_page_continue)
tzcntl %eax, %eax
# ifdef USE_AS_WMEMCHR
/* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */
leaq (%RAW_PTR_REG, %rax, CHAR_SIZE), %rax
# else
addq %RAW_PTR_REG, %rax
# endif
ret
.p2align 4
L(first_vec_x1):
tzcntl %eax, %eax
leaq VEC_SIZE(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(first_vec_x2):
tzcntl %eax, %eax
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(first_vec_x3):
tzcntl %eax, %eax
leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(first_vec_x4):
tzcntl %eax, %eax
leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 5
L(aligned_more):
/* Check the first 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. */
# ifndef USE_AS_RAWMEMCHR
/* Align data to VEC_SIZE. */
L(cross_page_continue):
xorl %ecx, %ecx
subl %edi, %ecx
andq $-VEC_SIZE, %rdi
/* esi is for adjusting length to see if near the end. */
leal (VEC_SIZE * 5)(%rdi, %rcx), %esi
# ifdef USE_AS_WMEMCHR
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %esi
# endif
# else
andq $-VEC_SIZE, %rdi
L(cross_page_continue):
# endif
/* Load first VEC regardless. */
VPCMP $0, (VEC_SIZE)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
# ifndef USE_AS_RAWMEMCHR
/* Adjust length. If near end handle specially. */
subq %rsi, %rdx
jbe L(last_4x_vec_or_less)
# endif
testl %eax, %eax
jnz L(first_vec_x1)
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x2)
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x3)
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x4)
# ifndef USE_AS_RAWMEMCHR
/* Check if at last CHAR_PER_VEC * 4 length. */
subq $(CHAR_PER_VEC * 4), %rdx
jbe L(last_4x_vec_or_less_cmpeq)
/* +VEC_SIZE if USE_IN_RTM otherwise +VEC_SIZE * 5. */
addq $(VEC_SIZE + (VEC_SIZE * 4 - BASE_OFFSET)), %rdi
/* Align data to VEC_SIZE * 4 for the loop and readjust length.
*/
# ifdef USE_AS_WMEMCHR
movl %edi, %ecx
andq $-(4 * VEC_SIZE), %rdi
subl %edi, %ecx
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %ecx
addq %rcx, %rdx
# else
addq %rdi, %rdx
andq $-(4 * VEC_SIZE), %rdi
subq %rdi, %rdx
# endif
# else
addq $(VEC_SIZE + (VEC_SIZE * 4 - BASE_OFFSET)), %rdi
andq $-(4 * VEC_SIZE), %rdi
# endif
# ifdef USE_IN_RTM
vpxorq %XMMZERO, %XMMZERO, %XMMZERO
# else
/* copy ymmmatch to ymm0 so we can use vpcmpeq which is not
encodable with EVEX registers (ymm16-ymm31). */
vmovdqa64 %YMMMATCH, %ymm0
# endif
/* Compare 4 * VEC at a time forward. */
.p2align 4
L(loop_4x_vec):
/* Two versions of the loop. One that does not require
vzeroupper by not using ymm0-ymm15 and another does that require
vzeroupper because it uses ymm0-ymm15. The reason why ymm0-ymm15
is used at all is because there is no EVEX encoding vpcmpeq and
with vpcmpeq this loop can be performed more efficiently. The
non-vzeroupper version is safe for RTM while the vzeroupper
version should be prefered if RTM are not supported. */
# ifdef USE_IN_RTM
/* It would be possible to save some instructions using 4x VPCMP
but bottleneck on port 5 makes it not woth it. */
VPCMP $4, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k1
/* xor will set bytes match esi to zero. */
vpxorq (VEC_SIZE * 5)(%rdi), %YMMMATCH, %YMM2
vpxorq (VEC_SIZE * 6)(%rdi), %YMMMATCH, %YMM3
VPCMP $0, (VEC_SIZE * 7)(%rdi), %YMMMATCH, %k3
/* Reduce VEC2 / VEC3 with min and VEC1 with zero mask. */
VPMINU %YMM2, %YMM3, %YMM3{%k1}{z}
VPCMP $0, %YMM3, %YMMZERO, %k2
# else
/* Since vptern can only take 3x vectors fastest to do 1 vec
seperately with EVEX vpcmp. */
# ifdef USE_AS_WMEMCHR
/* vptern can only accept masks for epi32/epi64 so can only save
instruction using not equals mask on vptern with wmemchr. */
VPCMP $4, (%rdi), %YMMMATCH, %k1
# else
VPCMP $0, (%rdi), %YMMMATCH, %k1
# endif
/* Compare 3x with vpcmpeq and or them all together with vptern.
*/
VPCMPEQ VEC_SIZE(%rdi), %ymm0, %ymm2
VPCMPEQ (VEC_SIZE * 2)(%rdi), %ymm0, %ymm3
VPCMPEQ (VEC_SIZE * 3)(%rdi), %ymm0, %ymm4
# ifdef USE_AS_WMEMCHR
/* This takes the not of or between ymm2, ymm3, ymm4 as well as
combines result from VEC0 with zero mask. */
vpternlogd $1, %ymm2, %ymm3, %ymm4{%k1}{z}
vpmovmskb %ymm4, %ecx
# else
/* 254 is mask for oring ymm2, ymm3, ymm4 into ymm4. */
vpternlogd $254, %ymm2, %ymm3, %ymm4
vpmovmskb %ymm4, %ecx
kmovd %k1, %eax
# endif
# endif
# ifdef USE_AS_RAWMEMCHR
subq $-(VEC_SIZE * 4), %rdi
# endif
# ifdef USE_IN_RTM
kortestd %k2, %k3
# else
# ifdef USE_AS_WMEMCHR
/* ecx contains not of matches. All 1s means no matches. incl will
overflow and set zeroflag if that is the case. */
incl %ecx
# else
/* If either VEC1 (eax) or VEC2-VEC4 (ecx) are not zero. Adding
to ecx is not an issue because if eax is non-zero it will be
used for returning the match. If it is zero the add does
nothing. */
addq %rax, %rcx
# endif
# endif
# ifdef USE_AS_RAWMEMCHR
jz L(loop_4x_vec)
# else
jnz L(loop_4x_vec_end)
subq $-(VEC_SIZE * 4), %rdi
subq $(CHAR_PER_VEC * 4), %rdx
ja L(loop_4x_vec)
/* Fall through into less than 4 remaining vectors of length case.
*/
VPCMP $0, BASE_OFFSET(%rdi), %YMMMATCH, %k0
addq $(BASE_OFFSET - VEC_SIZE), %rdi
kmovd %k0, %eax
VZEROUPPER
L(last_4x_vec_or_less):
/* Check if first VEC contained match. */
testl %eax, %eax
jnz L(first_vec_x1_check)
/* If remaining length > CHAR_PER_VEC * 2. */
addl $(CHAR_PER_VEC * 2), %edx
jg L(last_4x_vec)
L(last_2x_vec):
/* If remaining length < CHAR_PER_VEC. */
addl $CHAR_PER_VEC, %edx
jle L(zero_end)
/* Check VEC2 and compare any match with remaining length. */
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
cmpl %eax, %edx
jbe L(set_zero_end)
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
L(zero_end):
ret
.p2align 4
L(first_vec_x1_check):
tzcntl %eax, %eax
/* Adjust length. */
subl $-(CHAR_PER_VEC * 4), %edx
/* Check if match within remaining length. */
cmpl %eax, %edx
jbe L(set_zero_end)
/* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */
leaq VEC_SIZE(%rdi, %rax, CHAR_SIZE), %rax
ret
L(set_zero_end):
xorl %eax, %eax
ret
.p2align 4
L(loop_4x_vec_end):
# endif
/* rawmemchr will fall through into this if match was found in
loop. */
# if defined USE_IN_RTM || defined USE_AS_WMEMCHR
/* k1 has not of matches with VEC1. */
kmovd %k1, %eax
# ifdef USE_AS_WMEMCHR
subl $((1 << CHAR_PER_VEC) - 1), %eax
# else
incl %eax
# endif
# else
/* eax already has matches for VEC1. */
testl %eax, %eax
# endif
jnz L(last_vec_x1_return)
# ifdef USE_IN_RTM
VPCMP $0, %YMM2, %YMMZERO, %k0
kmovd %k0, %eax
# else
vpmovmskb %ymm2, %eax
# endif
testl %eax, %eax
jnz L(last_vec_x2_return)
# ifdef USE_IN_RTM
kmovd %k2, %eax
testl %eax, %eax
jnz L(last_vec_x3_return)
kmovd %k3, %eax
tzcntl %eax, %eax
leaq (VEC_SIZE * 3 + RET_OFFSET)(%rdi, %rax, CHAR_SIZE), %rax
# else
vpmovmskb %ymm3, %eax
/* Combine matches in VEC3 (eax) with matches in VEC4 (ecx). */
salq $VEC_SIZE, %rcx
orq %rcx, %rax
tzcntq %rax, %rax
leaq (VEC_SIZE * 2 + RET_OFFSET)(%rdi, %rax), %rax
VZEROUPPER
# endif
ret
.p2align 4
L(last_vec_x1_return):
tzcntl %eax, %eax
# if defined USE_AS_WMEMCHR || RET_OFFSET != 0
/* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */
leaq RET_OFFSET(%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
VZEROUPPER
ret
.p2align 4
L(last_vec_x2_return):
tzcntl %eax, %eax
/* NB: Multiply bytes by RET_SCALE to get the wchar_t count
if relevant (RET_SCALE = CHAR_SIZE if USE_AS_WMEMCHAR and
USE_IN_RTM are both defined. Otherwise RET_SCALE = 1. */
leaq (VEC_SIZE + RET_OFFSET)(%rdi, %rax, RET_SCALE), %rax
VZEROUPPER
ret
# ifdef USE_IN_RTM
.p2align 4
L(last_vec_x3_return):
tzcntl %eax, %eax
/* NB: Multiply bytes by CHAR_SIZE to get the wchar_t count. */
leaq (VEC_SIZE * 2 + RET_OFFSET)(%rdi, %rax, CHAR_SIZE), %rax
ret
# endif
# ifndef USE_AS_RAWMEMCHR
L(last_4x_vec_or_less_cmpeq):
VPCMP $0, (VEC_SIZE * 5)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
subq $-(VEC_SIZE * 4), %rdi
/* Check first VEC regardless. */
testl %eax, %eax
jnz L(first_vec_x1_check)
/* If remaining length <= CHAR_PER_VEC * 2. */
addl $(CHAR_PER_VEC * 2), %edx
jle L(last_2x_vec)
.p2align 4
L(last_4x_vec):
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(last_vec_x2)
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
/* Create mask for possible matches within remaining length. */
# ifdef USE_AS_WMEMCHR
movl $((1 << (CHAR_PER_VEC * 2)) - 1), %ecx
bzhil %edx, %ecx, %ecx
# else
movq $-1, %rcx
bzhiq %rdx, %rcx, %rcx
# endif
/* Test matches in data against length match. */
andl %ecx, %eax
jnz L(last_vec_x3)
/* if remaining length <= CHAR_PER_VEC * 3 (Note this is after
remaining length was found to be > CHAR_PER_VEC * 2. */
subl $CHAR_PER_VEC, %edx
jbe L(zero_end2)
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMMATCH, %k0
kmovd %k0, %eax
/* Shift remaining length mask for last VEC. */
# ifdef USE_AS_WMEMCHR
shrl $CHAR_PER_VEC, %ecx
# else
shrq $CHAR_PER_VEC, %rcx
# endif
andl %ecx, %eax
jz L(zero_end2)
tzcntl %eax, %eax
leaq (VEC_SIZE * 4)(%rdi, %rax, CHAR_SIZE), %rax
L(zero_end2):
ret
L(last_vec_x2):
tzcntl %eax, %eax
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
.p2align 4
L(last_vec_x3):
tzcntl %eax, %eax
leaq (VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax
ret
# endif
END (MEMCHR)
#endif