/* Function tanhf vectorized with AVX-512. Copyright (C) 2021-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see https://www.gnu.org/licenses/. */ /* * ALGORITHM DESCRIPTION: * * NOTE: Since the hyperbolic tangent function is odd * (tanh(x) = -tanh(-x)), below algorithm deals with the absolute * value of the argument |x|: tanh(x) = sign(x) * tanh(|x|) * * We use a table lookup method to compute tanh(|x|). * The basic idea is to split the input range into a number of subintervals * and to approximate tanh(.) with a polynomial on each of them. * * IEEE SPECIAL CONDITIONS: * x = [+, -]0, r = [+, -]0 * x = +Inf, r = +1 * x = -Inf, r = -1 * x = QNaN, r = QNaN * x = SNaN, r = QNaN * * * ALGORITHM DETAILS * We handle special values in a callout function, aside from main path * computations. "Special" for this algorithm are: * INF, NAN, |x| > HUGE_THRESHOLD * * * Main path computations are organized as follows: * Actually we split the interval [0, SATURATION_THRESHOLD) * into a number of subintervals. On each subinterval we approximate tanh(.) * with a minimax polynomial of pre-defined degree. Polynomial coefficients * are computed beforehand and stored in table. We also use * * y := |x| + B, * * here B depends on subinterval and is used to make argument * closer to zero. * We also add large fake interval [SATURATION_THRESHOLD, HUGE_THRESHOLD], * where 1.0 + 0.0*y + 0.0*y^2 ... coefficients are stored - just to * preserve main path computation logic but return 1.0 for all arguments. * * Hence reconstruction looks as follows: * we extract proper polynomial and range reduction coefficients * (Pj and B), corresponding to subinterval, to which |x| belongs, * and return * * r := sign(x) * (P0 + P1 * y + ... + Pn * y^n) * * NOTE: we use multiprecision technique to multiply and sum the first * K terms of the polynomial. So Pj, j = 0..K are stored in * table each as a pair of target precision numbers (Pj and PLj) to * achieve wider than target precision. * * */ /* Offsets for data table __svml_stanh_data_internal_avx512. Ordered by use in the function. On cold-starts this might help the prefetcher. Possibly a better idea is to interleave start/end so that the prefetcher is less likely to detect a stream and pull irrelivant lines into cache. */ /* Offsets for data table __svml_stanh_data_internal. 4 bytes each. */ #define _iExpMantMask_UISA 0 #define _iMinIdxOfsMask_UISA 4 #define _iMaxIdxMask_UISA 8 #define _iExpMask 12 /* Offsets for data table __svml_stanh_data_internal_al64. 64 bytes each. */ #define _sC_lo 0 #define _sC_hi 64 #define _sP7_lo 128 #define _sP7_hi 192 #define _sSignMask 256 #define _sP6_lo 320 #define _sP6_hi 384 #define _sP5_lo 448 #define _sP5_hi 512 #define _sP4_lo 576 #define _sP4_hi 640 #define _sP3_lo 704 #define _sP3_hi 768 #define _sP2_lo 832 #define _sP2_hi 896 #define _sP0_lo 960 #define _sP0_hi 1024 #include #define TANHF_DATA(x) ((x)+__svml_stanh_data_internal_al64) #define TANHF_DATA_UNALIGNED(x) ((x)+__svml_stanh_data_internal) .section .text.exex512, "ax", @progbits ENTRY(_ZGVeN16v_tanhf_skx) /* Here huge arguments, INF and NaNs are filtered out to callout. */ vpandd TANHF_DATA_UNALIGNED(_iExpMantMask_UISA)(%rip){1to16}, %zmm0, %zmm1 vpsubd TANHF_DATA_UNALIGNED(_iMinIdxOfsMask_UISA)(%rip){1to16}, %zmm1, %zmm2 /* Selection arguments between [0, 0x03e00000] into zmm3. */ vpxord %zmm3, %zmm3, %zmm3 vpmaxsd %zmm3, %zmm2, %zmm3 vpminsd TANHF_DATA_UNALIGNED(_iMaxIdxMask_UISA)(%rip){1to16}, %zmm3, %zmm3 /* Setup permute indices in zmm3. */ vpsrld $21, %zmm3, %zmm3 /* Store if there are any special cases in k1. */ vpcmpd $6, TANHF_DATA_UNALIGNED(_iExpMask)(%rip){1to16}, %zmm1, %k1 vmovaps TANHF_DATA(_sC_lo)(%rip), %zmm5 vpermt2ps TANHF_DATA(_sC_hi)(%rip), %zmm3, %zmm5 vmovaps TANHF_DATA(_sP7_lo)(%rip), %zmm2 vpermt2ps TANHF_DATA(_sP7_hi)(%rip), %zmm3, %zmm2 /* Store absolute values of inputs in zmm1. */ vmovaps TANHF_DATA(_sSignMask)(%rip), %zmm4 vandnps %zmm0, %zmm4, %zmm1 vsubps {rn-sae}, %zmm5, %zmm1, %zmm1 vmovaps TANHF_DATA(_sP6_lo)(%rip), %zmm5 vpermt2ps TANHF_DATA(_sP6_hi)(%rip), %zmm3, %zmm5 vmovaps TANHF_DATA(_sP5_lo)(%rip), %zmm6 vpermt2ps TANHF_DATA(_sP5_hi)(%rip), %zmm3, %zmm6 vfmadd213ps {rn-sae}, %zmm5, %zmm1, %zmm2 vfmadd213ps {rn-sae}, %zmm6, %zmm1, %zmm2 vmovaps TANHF_DATA(_sP4_lo)(%rip), %zmm7 vpermt2ps TANHF_DATA(_sP4_hi)(%rip), %zmm3, %zmm7 vmovaps TANHF_DATA(_sP3_lo)(%rip), %zmm8 vpermt2ps TANHF_DATA(_sP3_hi)(%rip), %zmm3, %zmm8 vfmadd213ps {rn-sae}, %zmm7, %zmm1, %zmm2 vfmadd213ps {rn-sae}, %zmm8, %zmm1, %zmm2 vmovaps TANHF_DATA(_sP2_lo)(%rip), %zmm9 vpermt2ps TANHF_DATA(_sP2_hi)(%rip), %zmm3, %zmm9 vmovaps TANHF_DATA(_sP0_lo)(%rip), %zmm10 vpermt2ps TANHF_DATA(_sP0_hi)(%rip), %zmm3, %zmm10 vfmadd213ps {rn-sae}, %zmm9, %zmm1, %zmm2 vfmadd213ps {rn-sae}, %zmm10, %zmm1, %zmm2 kmovw %k1, %edx testl %edx, %edx /* Go to special inputs processing branch. */ jne L(SPECIAL_VALUES_BRANCH) # LOE rbx r12 r13 r14 r15 zmm0 zmm2 zmm4 /* Wait until after branch of write over zmm0. */ vpternlogd $0xec, %zmm4, %zmm2, %zmm0 /* No stack restoration on the fastpath. */ ret /* Cold case. edx has 1s where there was a special value that needs to be handled by a tanhf call. Optimize for code size more so than speed here. */ L(SPECIAL_VALUES_BRANCH): # LOE rbx rdx r12 r13 r14 r15 zmm0 zmm2 zmm4 /* Use r13 to save/restore the stack. This allows us to use rbp as callee save register saving code size. */ pushq %r13 cfi_adjust_cfa_offset(8) cfi_offset(r13, -16) /* Need to callee save registers to preserve state across tanhf calls. */ pushq %rbx cfi_adjust_cfa_offset(8) cfi_offset(rbx, -24) pushq %rbp cfi_adjust_cfa_offset(8) cfi_offset(rbp, -32) movq %rsp, %r13 cfi_def_cfa_register(r13) /* Align stack and make room for 2x zmm vectors. */ andq $-64, %rsp addq $-128, %rsp /* Save original input (zmm0 unchanged up to this point). */ vmovaps %zmm0, 64(%rsp) /* Save all already computed inputs. */ vpternlogd $0xec, %zmm4, %zmm2, %zmm0 vmovaps %zmm0, (%rsp) vzeroupper /* edx has 1s where there was a special value that needs to be handled by a tanhf call. */ movl %edx, %ebx L(SPECIAL_VALUES_LOOP): # LOE rbx rbp r12 r13 r14 r15 /* use rbp as index for special value that is saved across calls to tanhf. We technically don't need a callee save register here as offset to rsp is always [0, 56] so we can restore rsp by realigning to 64. Essentially the tradeoff is 1 extra save/restore vs 2 extra instructions in the loop. Realigning also costs more code size. */ xorl %ebp, %ebp tzcntl %ebx, %ebp /* Scalar math fucntion call to process special input. */ vmovss 64(%rsp, %rbp, 4), %xmm0 call tanhf@PLT /* No good way to avoid the store-forwarding fault this will cause on return. `lfence` avoids the SF fault but at greater cost as it serialized stack/callee save restoration. */ vmovss %xmm0, (%rsp, %rbp, 4) blsrl %ebx, %ebx jnz L(SPECIAL_VALUES_LOOP) # LOE r12 r13 r14 r15 /* All results have been written to (%rsp). */ vmovaps (%rsp), %zmm0 /* Restore rsp. */ movq %r13, %rsp cfi_def_cfa_register(rsp) /* Restore callee save registers. */ popq %rbp cfi_adjust_cfa_offset(-8) cfi_restore(rbp) popq %rbx cfi_adjust_cfa_offset(-8) cfi_restore(rbp) popq %r13 cfi_adjust_cfa_offset(-8) cfi_restore(r13) ret END(_ZGVeN16v_tanhf_skx) .section .rodata, "a" .align 16 #ifdef __svml_stanh_data_internal_typedef typedef unsigned int VUINT32; typedef struct { __declspec(align(4)) VUINT32 _iExpMantMask_UISA[1][1]; __declspec(align(4)) VUINT32 _iMinIdxOfsMask_UISA[1][1]; __declspec(align(4)) VUINT32 _iMaxIdxMask_UISA[1][1]; __declspec(align(4)) VUINT32 _iExpMask[1][1]; __declspec(align(64)) VUINT32 _sC_lo[16][1]; __declspec(align(64)) VUINT32 _sC_hi[16][1]; __declspec(align(64)) VUINT32 _sP7_lo[16][1]; __declspec(align(64)) VUINT32 _sP7_hi[16][1]; __declspec(align(64)) VUINT32 _sSignMask[16][1]; __declspec(align(64)) VUINT32 _sP6_lo[16][1]; __declspec(align(64)) VUINT32 _sP6_hi[16][1]; __declspec(align(64)) VUINT32 _sP5_lo[16][1]; __declspec(align(64)) VUINT32 _sP5_hi[16][1]; __declspec(align(64)) VUINT32 _sP4_lo[16][1]; __declspec(align(64)) VUINT32 _sP4_hi[16][1]; __declspec(align(64)) VUINT32 _sP3_lo[16][1]; __declspec(align(64)) VUINT32 _sP3_hi[16][1]; __declspec(align(64)) VUINT32 _sP2_lo[16][1]; __declspec(align(64)) VUINT32 _sP2_hi[16][1]; __declspec(align(64)) VUINT32 _sP0_lo[16][1]; __declspec(align(64)) VUINT32 _sP0_hi[16][1]; } __svml_stanh_data_internal; #endif __svml_stanh_data_internal: .align 4 /* _iExpMantMask_UISA */ .long 0x7fe00000 .align 4 /* _iMinIdxOfsMask_UISA */ .long 0x3d400000 .align 4 /* _iMaxIdxMask_UISA */ .long 0x03e00000 .align 4 /* _iExpMask */ .long 0x7f000000 .align 64 __svml_stanh_data_internal_al64: .align 64 /* _sC_lo */ .long 0x00000000, 0x3d700000, 0x3d900000, 0x3db00000 .long 0x3dd00000, 0x3df00000, 0x3e100000, 0x3e300000 .long 0x3e500000, 0x3e700000, 0x3e900000, 0x3eb00000 .long 0x3ed00000, 0x3ef00000, 0x3f100000, 0x3f300000 .align 64 /* _sC_hi */ .long 0x3f500000, 0x3f700000, 0x3f900000, 0x3fb00000 .long 0x3fd00000, 0x3ff00000, 0x40100000, 0x40300000 .long 0x40500000, 0x40700000, 0x40900000, 0x40b00000 .long 0x40d00000, 0x40f00000, 0x41100000, 0x00000000 .align 64 /* _sP7_lo */ .long 0xbc0e2f66, 0x460bda12, 0x43d638ef, 0xc3e11c3e .long 0xc2baa4e9, 0xc249da2d, 0xc1859b82, 0x40dd5b57 .long 0x40494640, 0x40c730a8, 0xbf0f160e, 0x3e30e76f .long 0xbea81387, 0xbdb26a1c, 0xbd351e57, 0xbb4c01a0 .align 64 /* _sP7_hi */ .long 0x3c1d7bfb, 0x3c722cd1, 0x3c973f1c, 0x3c33a31b .long 0x3b862ef4, 0x3a27b3d0, 0xba3b5907, 0xba0efc22 .long 0xb97f9f0f, 0xb8c8af50, 0xb7bdddfb, 0xb64f2950 .long 0xb4e085b1, 0xb3731dfa, 0xb15a1f04, 0x00000000 .align 64 /* _sSignMask */ .long 0x80000000, 0x80000000, 0x80000000, 0x80000000 .long 0x80000000, 0x80000000, 0x80000000, 0x80000000 .long 0x80000000, 0x80000000, 0x80000000, 0x80000000 .long 0x80000000, 0x80000000, 0x80000000, 0x80000000 .align 64 /* _sP6_lo */ .long 0x3e0910e9, 0x43761143, 0x4165ecdc, 0xc190f756 .long 0xc08c097d, 0xc02ba813, 0xbf7f6bda, 0x3f2b1dc0 .long 0x3ece105d, 0x3f426a94, 0xbadb0dc4, 0x3da43b17 .long 0xbd51ab88, 0xbcaea23d, 0xbd3b6d8d, 0xbd6caaad .align 64 /* _sP6_hi */ .long 0xbd795bed, 0xbd5fddda, 0xbd038f3b, 0xbc1cad63 .long 0x3abb4766, 0x3b95f10b, 0x3b825873, 0x3afaea66 .long 0x3a49f878, 0x39996bf3, 0x388f3e6c, 0x371bb0e3 .long 0x35a8a5e6, 0x34369b17, 0x322487b0, 0x00000000 .align 64 /* _sP5_lo */ .long 0xb76dd6b9, 0xbe1c276d, 0x3c1dcf2f, 0x3dc1a78d .long 0x3d96f985, 0x3da2b61b, 0x3dc13397, 0x3dd2f670 .long 0x3df48a0a, 0x3e06c5a8, 0x3e1a3aba, 0x3e27c405 .long 0x3e2e78d0, 0x3e2c3e44, 0x3e1d3097, 0x3df4a8f4 .align 64 /* _sP5_hi */ .long 0x3da38508, 0x3d31416a, 0x3b562657, 0xbcaeeac9 .long 0xbcce9419, 0xbcaaeac4, 0xbc49e7d0, 0xbba71ddd .long 0xbb003b0e, 0xba3f9a05, 0xb92c08a7, 0xb7ba9232 .long 0xb64a0b0f, 0xb4dac169, 0xb2ab78ac, 0x00000000 .align 64 /* _sP4_lo */ .long 0xbeaaaaa5, 0xbeab0612, 0xbea7f01f, 0xbea4e120 .long 0xbea387b7, 0xbea15962, 0xbe9d57f7, 0xbe976b5a .long 0xbe90230d, 0xbe880dff, 0xbe7479b3, 0xbe4c3d88 .long 0xbe212482, 0xbdeb8cba, 0xbd5e78ad, 0x3c6b5e6e .align 64 /* _sP4_hi */ .long 0x3d839143, 0x3dc21ee1, 0x3de347af, 0x3dcbec96 .long 0x3d99ef2d, 0x3d542ea1, 0x3cdde701, 0x3c2cca67 .long 0x3b81cb27, 0x3ac073a1, 0x39ac3032, 0x383a94d9 .long 0x36ca081d, 0x355abd4c, 0x332b3cb6, 0x00000000 .align 64 /* _sP3_lo */ .long 0xb0343c7b, 0xbd6ee69d, 0xbd8f0da7, 0xbdae477d .long 0xbdcd2a1f, 0xbdeba80d, 0xbe0c443b, 0xbe293cf3 .long 0xbe44f282, 0xbe5f3651, 0xbe81c7c0, 0xbe96d7ca .long 0xbea7fb8e, 0xbeb50e9e, 0xbec12efe, 0xbec4be92 .align 64 /* _sP3_hi */ .long 0xbebce070, 0xbead510e, 0xbe8ef7d6, 0xbe4b8704 .long 0xbe083237, 0xbdaf7449, 0xbd2e1ec4, 0xbc83bf06 .long 0xbbc3e0b5, 0xbb10aadc, 0xba0157db, 0xb88c18f2 .long 0xb717b096, 0xb5a43bae, 0xb383012c, 0x00000000 .align 64 /* _sP2_lo */ .long 0x3f800000, 0x3f7f1f84, 0x3f7ebd11, 0x3f7e1e5f .long 0x3f7d609f, 0x3f7c842d, 0x3f7b00e5, 0x3f789580 .long 0x3f75b8ad, 0x3f726fd9, 0x3f6cc59b, 0x3f63fb92 .long 0x3f59ff97, 0x3f4f11d7, 0x3f3d7573, 0x3f24f360 .align 64 /* _sP2_hi */ .long 0x3f0cbfe7, 0x3eec1a69, 0x3eb0a801, 0x3e6753a2 .long 0x3e132f1a, 0x3db7e7d3, 0x3d320845, 0x3c84d3d4 .long 0x3bc477b7, 0x3b10d3da, 0x3a01601e, 0x388c1a3b .long 0x3717b0da, 0x35a43bce, 0x338306c6, 0x00000000 .align 64 /* _sP0_lo */ .long 0x00000000, 0x3d6fb9c9, 0x3d8fc35f, 0x3daf9169 .long 0x3dcf49ab, 0x3deee849, 0x3e0f0ee8, 0x3e2e4984 .long 0x3e4d2f8e, 0x3e6bb32e, 0x3e8c51cd, 0x3ea96163 .long 0x3ec543f1, 0x3edfd735, 0x3f028438, 0x3f18abf0 .align 64 /* _sP0_hi */ .long 0x3f2bc480, 0x3f3bec1c, 0x3f4f2e5b, 0x3f613c53 .long 0x3f6ce37d, 0x3f743c4f, 0x3f7a5feb, 0x3f7dea85 .long 0x3f7f3b3d, 0x3f7fb78c, 0x3f7fefd4, 0x3f7ffdd0 .long 0x3f7fffb4, 0x3f7ffff6, 0x3f7fffff, 0x3f800000 .align 64 .type __svml_stanh_data_internal_al64, @object .size __svml_stanh_data_internal_al64, .-__svml_stanh_data_internal_al64 .type __svml_stanh_data_internal, @object .size __svml_stanh_data_internal, .-__svml_stanh_data_internal