/* Function asinhf vectorized with AVX2. Copyright (C) 2021-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see https://www.gnu.org/licenses/. */ /* * ALGORITHM DESCRIPTION: * * Compute asinh(x) as log(x + sqrt(x*x + 1)) * * Special cases: * * asinh(NaN) = quiet NaN, and raise invalid exception * asinh(INF) = that INF * asinh(0) = that 0 * */ /* Offsets for data table __svml_sasinh_data_internal */ #define SgnMask 0 #define sOne 32 #define sPoly 64 #define iBrkValue 320 #define iOffExpoMask 352 #define sBigThreshold 384 #define sC2 416 #define sC3 448 #define sHalf 480 #define sLargestFinite 512 #define sLittleThreshold 544 #define sSign 576 #define sThirtyOne 608 #define sTopMask8 640 #define XScale 672 #define sLn2 704 #include .section .text.avx2, "ax", @progbits ENTRY(_ZGVdN8v_asinhf_avx2) pushq %rbp cfi_def_cfa_offset(16) movq %rsp, %rbp cfi_def_cfa(6, 16) cfi_offset(6, -16) andq $-32, %rsp subq $96, %rsp vmovaps %ymm0, %ymm9 /* Load the constant 1 and a sign mask */ vmovups sOne+__svml_sasinh_data_internal(%rip), %ymm8 /* No need to split X when FMA is available in hardware. */ vmulps %ymm9, %ymm9, %ymm5 vmovups sTopMask8+__svml_sasinh_data_internal(%rip), %ymm1 /* * Finally, express Y + W = X^2 + 1 accurately where Y has <= 8 bits. * If |X| <= 1 then |XHi| <= 1 and so |X2Hi| <= 1, so we can treat 1 * as the dominant component in the compensated summation. Otherwise, * if |X| >= 1, then since X2Hi only has 22 significant bits, the basic * addition will be exact anyway until we get to |X| >= 2^24. But by * that time the log function is well-conditioned enough that the * rounding error doesn't matter. Hence we can treat 1 as dominant even * if it literally isn't. */ vaddps %ymm5, %ymm8, %ymm13 vandps %ymm1, %ymm13, %ymm2 vmovaps %ymm9, %ymm4 vsubps %ymm13, %ymm8, %ymm11 vsubps %ymm2, %ymm13, %ymm15 /* * Compute R = 1/sqrt(Y + W) * (1 + d) * Force R to <= 8 significant bits. * This means that R * Y and R^2 * Y are exactly representable. */ vrsqrtps %ymm2, %ymm0 vfmsub213ps %ymm5, %ymm9, %ymm4 vaddps %ymm11, %ymm5, %ymm12 /* * Get the absolute value of the input, since we will exploit antisymmetry * and mostly assume X >= 0 in the core computation */ vandps SgnMask+__svml_sasinh_data_internal(%rip), %ymm9, %ymm6 /* * Check whether the input is finite, by checking |X| <= MaxFloat * Otherwise set the rangemask so that the callout will get used. * Note that this will also use the callout for NaNs since not(NaN <= MaxFloat) */ vcmpnle_uqps sLargestFinite+__svml_sasinh_data_internal(%rip), %ymm6, %ymm10 vaddps %ymm12, %ymm4, %ymm14 /* * Unfortunately, we can still be in trouble if |X| <= 2^-5, since * the absolute error 2^-(7+24)-ish in sqrt(1 + X^2) gets scaled up * by 1/X and comes close to our threshold. Hence if |X| <= 2^-4, * perform an alternative computation * sqrt(1 + X^2) - 1 = X^2/2 - X^4/8 + X^6/16 * X2 = X^2 */ vaddps %ymm4, %ymm5, %ymm4 /* * The following computation can go wrong for very large X, basically * because X^2 overflows. But for large X we have * asinh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30 * we can just later stick X back into the log and tweak up the exponent. * Actually we scale X by 2^-30 and tweak the exponent up by 31, * to stay in the safe range for the later log computation. * Compute a flag now telling us when do do this. */ vcmplt_oqps sBigThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm7 vaddps %ymm15, %ymm14, %ymm3 /* * Now 1 / (1 + d) * = 1 / (1 + (sqrt(1 - e) - 1)) * = 1 / sqrt(1 - e) * = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ... * So compute the first three nonconstant terms of that, so that * we have a relative correction (1 + Corr) to apply to S etc. * C1 = 1/2 * C2 = 3/8 * C3 = 5/16 */ vmovups sC3+__svml_sasinh_data_internal(%rip), %ymm12 vmovmskps %ymm10, %edx vandps %ymm1, %ymm0, %ymm10 /* * Compute S = (Y/sqrt(Y + W)) * (1 + d) * and T = (W/sqrt(Y + W)) * (1 + d) * so that S + T = sqrt(Y + W) * (1 + d) * S is exact, and the rounding error in T is OK. */ vmulps %ymm10, %ymm2, %ymm15 vmulps %ymm3, %ymm10, %ymm14 vmovups sHalf+__svml_sasinh_data_internal(%rip), %ymm3 vsubps %ymm8, %ymm15, %ymm0 /* * Obtain sqrt(1 + X^2) - 1 in two pieces * sqrt(1 + X^2) - 1 * = sqrt(Y + W) - 1 * = (S + T) * (1 + Corr) - 1 * = [S - 1] + [T + (S + T) * Corr] * We need a compensated summation for the last part. We treat S - 1 * as the larger part; it certainly is until about X < 2^-4, and in that * case, the error is affordable since X dominates over sqrt(1 + X^2) - 1 * Final sum is dTmp5 (hi) + dTmp7 (lo) */ vaddps %ymm14, %ymm15, %ymm13 /* * Compute e = -(2 * d + d^2) * The first FMR is exact, and the rounding error in the other is acceptable * since d and e are ~ 2^-8 */ vmovaps %ymm8, %ymm11 vfnmadd231ps %ymm15, %ymm10, %ymm11 vfnmadd231ps %ymm14, %ymm10, %ymm11 vfmadd213ps sC2+__svml_sasinh_data_internal(%rip), %ymm11, %ymm12 vfmadd213ps %ymm3, %ymm11, %ymm12 vmulps %ymm12, %ymm11, %ymm1 /* Now multiplex the two possible computations */ vcmple_oqps sLittleThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm11 vfmadd213ps %ymm14, %ymm13, %ymm1 vaddps %ymm0, %ymm1, %ymm2 vsubps %ymm2, %ymm0, %ymm10 /* sX2over2 = X^2/2 */ vmulps %ymm4, %ymm3, %ymm0 vaddps %ymm10, %ymm1, %ymm1 /* sX4over4 = X^4/4 */ vmulps %ymm0, %ymm0, %ymm5 /* sX46 = -X^4/4 + X^6/8 */ vfmsub231ps %ymm0, %ymm5, %ymm5 /* sX46over2 = -X^4/8 + x^6/16 */ vmulps %ymm5, %ymm3, %ymm3 vaddps %ymm3, %ymm0, %ymm5 vblendvps %ymm11, %ymm5, %ymm2, %ymm2 vsubps %ymm5, %ymm0, %ymm4 /* * Now do another compensated sum to add |X| + [sqrt(1 + X^2) - 1]. * It's always safe to assume |X| is larger. * This is the final 2-part argument to the log1p function */ vaddps %ymm2, %ymm6, %ymm14 /* * Now resume the main code. * reduction: compute r, n */ vmovups iBrkValue+__svml_sasinh_data_internal(%rip), %ymm5 vaddps %ymm4, %ymm3, %ymm10 /* * Now we feed into the log1p code, using H in place of _VARG1 and * also adding L into Xl. * compute 1+x as high, low parts */ vmaxps %ymm14, %ymm8, %ymm15 vminps %ymm14, %ymm8, %ymm0 vblendvps %ymm11, %ymm10, %ymm1, %ymm12 vsubps %ymm14, %ymm6, %ymm1 vaddps %ymm0, %ymm15, %ymm3 /* Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big" case. */ vmulps XScale+__svml_sasinh_data_internal(%rip), %ymm6, %ymm6 vaddps %ymm1, %ymm2, %ymm13 vsubps %ymm3, %ymm15, %ymm15 vaddps %ymm13, %ymm12, %ymm1 vaddps %ymm15, %ymm0, %ymm2 vblendvps %ymm7, %ymm3, %ymm6, %ymm0 vaddps %ymm2, %ymm1, %ymm4 vpsubd %ymm5, %ymm0, %ymm1 vpsrad $23, %ymm1, %ymm6 vpand iOffExpoMask+__svml_sasinh_data_internal(%rip), %ymm1, %ymm2 vmovups sPoly+224+__svml_sasinh_data_internal(%rip), %ymm1 vpslld $23, %ymm6, %ymm10 vpaddd %ymm5, %ymm2, %ymm13 vcvtdq2ps %ymm6, %ymm0 vpsubd %ymm10, %ymm8, %ymm12 /* polynomial evaluation */ vsubps %ymm8, %ymm13, %ymm8 /* Add 31 to the exponent in the "large" case to get log(2 * input) */ vaddps sThirtyOne+__svml_sasinh_data_internal(%rip), %ymm0, %ymm3 vandps %ymm7, %ymm4, %ymm11 vmulps %ymm12, %ymm11, %ymm14 vblendvps %ymm7, %ymm0, %ymm3, %ymm0 vaddps %ymm8, %ymm14, %ymm2 vfmadd213ps sPoly+192+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+160+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+128+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+96+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+64+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+32+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vfmadd213ps sPoly+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1 vmulps %ymm1, %ymm2, %ymm4 vfmadd213ps %ymm2, %ymm2, %ymm4 /* final reconstruction */ vfmadd132ps sLn2+__svml_sasinh_data_internal(%rip), %ymm4, %ymm0 /* Finally, reincorporate the original sign. */ vandps sSign+__svml_sasinh_data_internal(%rip), %ymm9, %ymm7 vxorps %ymm0, %ymm7, %ymm0 testl %edx, %edx /* Go to special inputs processing branch */ jne L(SPECIAL_VALUES_BRANCH) # LOE rbx r12 r13 r14 r15 edx ymm0 ymm9 /* Restore registers * and exit the function */ L(EXIT): movq %rbp, %rsp popq %rbp cfi_def_cfa(7, 8) cfi_restore(6) ret cfi_def_cfa(6, 16) cfi_offset(6, -16) /* Branch to process * special inputs */ L(SPECIAL_VALUES_BRANCH): vmovups %ymm9, 32(%rsp) vmovups %ymm0, 64(%rsp) # LOE rbx r12 r13 r14 r15 edx ymm0 xorl %eax, %eax # LOE rbx r12 r13 r14 r15 eax edx vzeroupper movq %r12, 16(%rsp) /* DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus) */ .cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22 movl %eax, %r12d movq %r13, 8(%rsp) /* DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus) */ .cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22 movl %edx, %r13d movq %r14, (%rsp) /* DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus) */ .cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22 # LOE rbx r15 r12d r13d /* Range mask * bits check */ L(RANGEMASK_CHECK): btl %r12d, %r13d /* Call scalar math function */ jc L(SCALAR_MATH_CALL) # LOE rbx r15 r12d r13d /* Special inputs * processing loop */ L(SPECIAL_VALUES_LOOP): incl %r12d cmpl $8, %r12d /* Check bits in range mask */ jl L(RANGEMASK_CHECK) # LOE rbx r15 r12d r13d movq 16(%rsp), %r12 cfi_restore(12) movq 8(%rsp), %r13 cfi_restore(13) movq (%rsp), %r14 cfi_restore(14) vmovups 64(%rsp), %ymm0 /* Go to exit */ jmp L(EXIT) /* DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus) */ .cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22 /* DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus) */ .cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22 /* DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus) */ .cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22 # LOE rbx r12 r13 r14 r15 ymm0 /* Scalar math fucntion call * to process special input */ L(SCALAR_MATH_CALL): movl %r12d, %r14d vmovss 32(%rsp, %r14, 4), %xmm0 call asinhf@PLT # LOE rbx r14 r15 r12d r13d xmm0 vmovss %xmm0, 64(%rsp, %r14, 4) /* Process special inputs in loop */ jmp L(SPECIAL_VALUES_LOOP) # LOE rbx r15 r12d r13d END(_ZGVdN8v_asinhf_avx2) .section .rodata, "a" .align 32 #ifdef __svml_sasinh_data_internal_typedef typedef unsigned int VUINT32; typedef struct { __declspec(align(32)) VUINT32 SgnMask[8][1]; __declspec(align(32)) VUINT32 sOne[8][1]; __declspec(align(32)) VUINT32 sPoly[8][8][1]; __declspec(align(32)) VUINT32 iBrkValue[8][1]; __declspec(align(32)) VUINT32 iOffExpoMask[8][1]; __declspec(align(32)) VUINT32 sBigThreshold[8][1]; __declspec(align(32)) VUINT32 sC2[8][1]; __declspec(align(32)) VUINT32 sC3[8][1]; __declspec(align(32)) VUINT32 sHalf[8][1]; __declspec(align(32)) VUINT32 sLargestFinite[8][1]; __declspec(align(32)) VUINT32 sLittleThreshold[8][1]; __declspec(align(32)) VUINT32 sSign[8][1]; __declspec(align(32)) VUINT32 sThirtyOne[8][1]; __declspec(align(32)) VUINT32 sTopMask8[8][1]; __declspec(align(32)) VUINT32 XScale[8][1]; __declspec(align(32)) VUINT32 sLn2[8][1]; } __svml_sasinh_data_internal; #endif __svml_sasinh_data_internal: /* SgnMask */ .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff /* sOne = SP 1.0 */ .align 32 .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 /* sPoly[] = SP polynomial */ .align 32 .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */ .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /* 3.3333265781402587890625000e-01 P1 */ .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */ .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /* 2.0007920265197753906250000e-01 P3 */ .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */ .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /* 1.4042308926582336425781250e-01 P5 */ .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */ .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /* 1.3820238411426544189453125e-01 P7 */ /* iBrkValue = SP 2/3 */ .align 32 .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab /* iOffExpoMask = SP significand mask */ .align 32 .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff /* sBigThreshold */ .align 32 .long 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000 /* sC2 */ .align 32 .long 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000 /* sC3 */ .align 32 .long 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000 /* sHalf */ .align 32 .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000 /* sLargestFinite */ .align 32 .long 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF /* sLittleThreshold */ .align 32 .long 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000 /* sSign */ .align 32 .long 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000 /* sThirtyOne */ .align 32 .long 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000 /* sTopMask8 */ .align 32 .long 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000 /* XScale */ .align 32 .long 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000 /* sLn2 = SP ln(2) */ .align 32 .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218 .align 32 .type __svml_sasinh_data_internal, @object .size __svml_sasinh_data_internal, .-__svml_sasinh_data_internal