/* Function hypot vectorized with SSE4. Copyright (C) 2021-2022 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see https://www.gnu.org/licenses/. */ /* * ALGORITHM DESCRIPTION: * * HIGH LEVEL OVERVIEW * * Calculate z = (x*x+y*y) * Calculate reciplicle sqrt (z) * Calculate error = z*(rsqrt(z)*rsqrt(z)) - 1 * Calculate fixing part p with polynom * Fix answer with sqrt(z) = z * rsqrt(z) + error * p * z * * ALGORITHM DETAILS * * Multiprecision branch for _HA_ only * Remove sigm from both arguments * Find maximum (_x) and minimum (_y) (by abs value) between arguments * Split _x int _a and _b for multiprecision * If _x >> _y we will we will not split _y for multiprecision * all _y will be put into lower part (_d) and higher part (_c = 0) * Fixing _hilo_mask for the case _x >> _y * Split _y into _c and _d for multiprecision with fixed mask * * compute Hi and Lo parts of _z = _x*_x + _y*_y * * _zHi = _a*_a + _c*_c * _zLo = (_x + _a)*_b + _d*_y + _d*_c * _z = _zHi + _zLo * * No multiprecision branch for _LA_ and _EP_ * _z = _VARG1 * _VARG1 + _VARG2 * _VARG2 * * Check _z exponent to be withing borders [3BC ; 441] else goto Callout * * _s ~ 1.0/sqrt(_z) * _s2 ~ 1.0/(sqrt(_z)*sqrt(_z)) ~ 1.0/_z = (1.0/_z + O) * _e[rror] = (1.0/_z + O) * _z - 1.0 * calculate fixing part _p * _p = (((_POLY_C5*_e + _POLY_C4)*_e +_POLY_C3)*_e +_POLY_C2)*_e + _POLY_C1 * some parts of polynom are skipped for lower flav * * result = _z * (1.0/sqrt(_z) + O) + _p * _e[rror] * _z * * */ /* Offsets for data table __svml_dhypot_data_internal */ #define _dHiLoMask 0 #define _dAbsMask 16 #define _dOne 32 #define _POLY_C5 48 #define _POLY_C4 64 #define _POLY_C3 80 #define _POLY_C2 96 #define _POLY_C1 112 #define _LowBoundary 128 #define _HighBoundary 144 #include .section .text.sse4, "ax", @progbits ENTRY(_ZGVbN2vv_hypot_sse4) subq $88, %rsp cfi_def_cfa_offset(96) /* * Defines * Implementation * Multiprecision branch for _HA_ only * _z = _VARG1 * _VARG1 + _VARG2 * _VARG2 */ movaps %xmm0, %xmm10 movaps %xmm1, %xmm2 mulpd %xmm0, %xmm10 mulpd %xmm1, %xmm2 addpd %xmm2, %xmm10 /* * _s ~ 1.0/sqrt(_z) * _s2 ~ 1.0/(sqrt(_z)*sqrt(_z)) ~ 1.0/_z */ cvtpd2ps %xmm10, %xmm7 movlhps %xmm7, %xmm7 rsqrtps %xmm7, %xmm8 cvtps2pd %xmm8, %xmm11 movaps %xmm11, %xmm2 mulpd %xmm11, %xmm2 /* _e[rror] ~ (1.0/_z + O) * _z - 1.0 */ mulpd %xmm10, %xmm2 subpd _dOne+__svml_dhypot_data_internal(%rip), %xmm2 /* * calculate fixing part _p * _p = (((_POLY_C5*_e + _POLY_C4)*_e +_POLY_C3)*_e +_POLY_C2)*_e + _POLY_C1 * some parts of polynom are skipped for lower flav */ movups _POLY_C4+__svml_dhypot_data_internal(%rip), %xmm9 mulpd %xmm2, %xmm9 addpd _POLY_C3+__svml_dhypot_data_internal(%rip), %xmm9 mulpd %xmm2, %xmm9 addpd _POLY_C2+__svml_dhypot_data_internal(%rip), %xmm9 mulpd %xmm2, %xmm9 addpd _POLY_C1+__svml_dhypot_data_internal(%rip), %xmm9 /* result = _z * (1.0/sqrt(_z) + O) + _p * _e[rror] * _z */ mulpd %xmm9, %xmm2 mulpd %xmm11, %xmm2 mulpd %xmm10, %xmm11 mulpd %xmm10, %xmm2 /* Check _z exponent to be withing borders [3BC ; 441] else goto Callout */ movq _LowBoundary+__svml_dhypot_data_internal(%rip), %xmm5 movq _HighBoundary+__svml_dhypot_data_internal(%rip), %xmm3 pshufd $221, %xmm10, %xmm4 pcmpgtd %xmm4, %xmm5 pcmpgtd %xmm3, %xmm4 por %xmm4, %xmm5 pshufd $80, %xmm5, %xmm6 movmskpd %xmm6, %edx addpd %xmm11, %xmm2 /* The end of implementation */ testl %edx, %edx /* Go to special inputs processing branch */ jne L(SPECIAL_VALUES_BRANCH) # LOE rbx rbp r12 r13 r14 r15 edx xmm0 xmm1 xmm2 /* Restore registers * and exit the function */ L(EXIT): movaps %xmm2, %xmm0 addq $88, %rsp cfi_def_cfa_offset(8) ret cfi_def_cfa_offset(96) /* Branch to process * special inputs */ L(SPECIAL_VALUES_BRANCH): movups %xmm0, 32(%rsp) movups %xmm1, 48(%rsp) movups %xmm2, 64(%rsp) # LOE rbx rbp r12 r13 r14 r15 edx xorl %eax, %eax movq %r12, 16(%rsp) cfi_offset(12, -80) movl %eax, %r12d movq %r13, 8(%rsp) cfi_offset(13, -88) movl %edx, %r13d movq %r14, (%rsp) cfi_offset(14, -96) # LOE rbx rbp r15 r12d r13d /* Range mask * bits check */ L(RANGEMASK_CHECK): btl %r12d, %r13d /* Call scalar math function */ jc L(SCALAR_MATH_CALL) # LOE rbx rbp r15 r12d r13d /* Special inputs * processing loop */ L(SPECIAL_VALUES_LOOP): incl %r12d cmpl $2, %r12d /* Check bits in range mask */ jl L(RANGEMASK_CHECK) # LOE rbx rbp r15 r12d r13d movq 16(%rsp), %r12 cfi_restore(12) movq 8(%rsp), %r13 cfi_restore(13) movq (%rsp), %r14 cfi_restore(14) movups 64(%rsp), %xmm2 /* Go to exit */ jmp L(EXIT) cfi_offset(12, -80) cfi_offset(13, -88) cfi_offset(14, -96) # LOE rbx rbp r12 r13 r14 r15 xmm2 /* Scalar math fucntion call * to process special input */ L(SCALAR_MATH_CALL): movl %r12d, %r14d movsd 32(%rsp, %r14, 8), %xmm0 movsd 48(%rsp, %r14, 8), %xmm1 call hypot@PLT # LOE rbx rbp r14 r15 r12d r13d xmm0 movsd %xmm0, 64(%rsp, %r14, 8) /* Process special inputs in loop */ jmp L(SPECIAL_VALUES_LOOP) # LOE rbx rbp r15 r12d r13d END(_ZGVbN2vv_hypot_sse4) .section .rodata, "a" .align 16 #ifdef __svml_dhypot_data_internal_typedef typedef unsigned int VUINT32; typedef struct { __declspec(align(16)) VUINT32 _dHiLoMask[2][2]; __declspec(align(16)) VUINT32 _dAbsMask[2][2]; __declspec(align(16)) VUINT32 _dOne[2][2]; __declspec(align(16)) VUINT32 _POLY_C5[2][2]; __declspec(align(16)) VUINT32 _POLY_C4[2][2]; __declspec(align(16)) VUINT32 _POLY_C3[2][2]; __declspec(align(16)) VUINT32 _POLY_C2[2][2]; __declspec(align(16)) VUINT32 _POLY_C1[2][2]; __declspec(align(16)) VUINT32 _LowBoundary[4][1]; __declspec(align(16)) VUINT32 _HighBoundary[4][1]; } __svml_dhypot_data_internal; #endif __svml_dhypot_data_internal: /* legacy algorithm */ .quad 0xffffc00000000000, 0xffffc00000000000 /* _dHiLoMask */ .align 16 .quad 0x7fffffffffffffff, 0x7fffffffffffffff /* _dAbsMask */ .align 16 .quad 0x3FF0000000000000, 0x3FF0000000000000 /* _dOne */ .align 16 .quad 0xBFCF800000000000, 0xBFCF800000000000 /* _POLY_C5 */ .align 16 .quad 0x3FD1800000000000, 0x3FD1800000000000 /* _POLY_C4 */ .align 16 .quad 0xBFD4000000000000, 0xBFD4000000000000 /* _POLY_C3 */ .align 16 .quad 0x3FD8000000000000, 0x3FD8000000000000 /* _POLY_C2 */ .align 16 .quad 0xBFE0000000000000, 0xBFE0000000000000 /* _POLY_C1 */ .align 16 .long 0x3BC00000, 0x3BC00000, 0x3BC00000, 0x3BC00000 /* _LowBoundary */ .align 16 .long 0x44100000, 0x44100000, 0x44100000, 0x44100000 /* _HighBoundary */ .align 16 .type __svml_dhypot_data_internal, @object .size __svml_dhypot_data_internal, .-__svml_dhypot_data_internal