/* Print CPU diagnostics data in ld.so. x86 version. Copyright (C) 2021-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include #include /* The generic CPUID dumping code. */ static void _dl_diagnostics_cpuid (void); static void print_cpu_features_value (const char *label, uint64_t value) { _dl_printf ("x86.cpu_features."); _dl_diagnostics_print_labeled_value (label, value); } static void print_cpu_feature_internal (unsigned int index, const char *kind, unsigned int reg, uint32_t value) { _dl_printf ("x86.cpu_features.features[0x%x].%s[0x%x]=0x%x\n", index, kind, reg, value); } static void print_cpu_feature_preferred (const char *label, unsigned int flag) { _dl_printf("x86.cpu_features.preferred.%s=0x%x\n", label, flag); } void _dl_diagnostics_cpu (void) { const struct cpu_features *cpu_features = __get_cpu_features (); print_cpu_features_value ("basic.kind", cpu_features->basic.kind); print_cpu_features_value ("basic.max_cpuid", cpu_features->basic.max_cpuid); print_cpu_features_value ("basic.family", cpu_features->basic.family); print_cpu_features_value ("basic.model", cpu_features->basic.model); print_cpu_features_value ("basic.stepping", cpu_features->basic.stepping); for (unsigned int index = 0; index < CPUID_INDEX_MAX; ++index) { /* The index values are part of the ABI via , so translating them to strings is not necessary. */ for (unsigned int reg = 0; reg < 4; ++reg) print_cpu_feature_internal (index, "cpuid", reg, cpu_features->features[index].cpuid_array[reg]); for (unsigned int reg = 0; reg < 4; ++reg) print_cpu_feature_internal (index, "active", reg, cpu_features->features[index].active_array[reg]); } /* The preferred indicators are not part of the ABI and need to be translated. */ #define BIT(x) \ print_cpu_feature_preferred (#x, CPU_FEATURE_PREFERRED_P (cpu_features, x)); #include "cpu-features-preferred_feature_index_1.def" #undef BIT print_cpu_features_value ("isa_1", cpu_features->isa_1); print_cpu_features_value ("xsave_state_size", cpu_features->xsave_state_size); print_cpu_features_value ("xsave_state_full_size", cpu_features->xsave_state_full_size); print_cpu_features_value ("data_cache_size", cpu_features->data_cache_size); print_cpu_features_value ("shared_cache_size", cpu_features->shared_cache_size); print_cpu_features_value ("non_temporal_threshold", cpu_features->non_temporal_threshold); print_cpu_features_value ("memset_non_temporal_threshold", cpu_features->memset_non_temporal_threshold); print_cpu_features_value ("rep_movsb_threshold", cpu_features->rep_movsb_threshold); print_cpu_features_value ("rep_movsb_stop_threshold", cpu_features->rep_movsb_stop_threshold); print_cpu_features_value ("rep_stosb_threshold", cpu_features->rep_stosb_threshold); print_cpu_features_value ("level1_icache_size", cpu_features->level1_icache_size); print_cpu_features_value ("level1_icache_linesize", cpu_features->level1_icache_linesize); print_cpu_features_value ("level1_dcache_size", cpu_features->level1_dcache_size); print_cpu_features_value ("level1_dcache_assoc", cpu_features->level1_dcache_assoc); print_cpu_features_value ("level1_dcache_linesize", cpu_features->level1_dcache_linesize); print_cpu_features_value ("level2_cache_size", cpu_features->level2_cache_size); print_cpu_features_value ("level2_cache_assoc", cpu_features->level2_cache_assoc); print_cpu_features_value ("level2_cache_linesize", cpu_features->level2_cache_linesize); print_cpu_features_value ("level3_cache_size", cpu_features->level3_cache_size); print_cpu_features_value ("level3_cache_assoc", cpu_features->level3_cache_assoc); print_cpu_features_value ("level3_cache_linesize", cpu_features->level3_cache_linesize); print_cpu_features_value ("level4_cache_size", cpu_features->level4_cache_size); print_cpu_features_value ("cachesize_non_temporal_divisor", cpu_features->cachesize_non_temporal_divisor); _Static_assert ( offsetof (struct cpu_features, cachesize_non_temporal_divisor) + sizeof (cpu_features->cachesize_non_temporal_divisor) == sizeof (*cpu_features), "last cpu_features field has been printed"); _dl_diagnostics_cpuid (); } /* The following code implements a generic CPUID dumper that tries to gather CPUID data without knowing about CPUID implementation details. */ /* Register arguments to CPUID. Multiple ECX subleaf values yielding the same result are combined, to shorten the output. Both identical matches (EAX to EDX are the same) and matches where EAX, EBX, EDX, and ECX are equal except in the lower byte, which must match the query ECX value. The latter is needed to compress ranges on CPUs which preserve the lowest byte in ECX if an unknown leaf is queried. */ struct cpuid_query { unsigned int eax; unsigned ecx_first; unsigned ecx_last; bool ecx_preserves_query_byte; }; /* Single integer value that can be used for sorting/ordering comparisons. Uses Q->eax and Q->ecx_first only because ecx_last is always greater than the previous ecx_first value and less than the subsequent one. */ static inline unsigned long long int cpuid_query_combined (struct cpuid_query *q) { /* ecx can be -1 (that is, ~0U). If this happens, this the only ecx value for this eax value, so the ordering does not matter. */ return ((unsigned long long int) q->eax << 32) | (unsigned int) q->ecx_first; }; /* Used for differential reporting of zero/non-zero values. */ static const struct cpuid_registers cpuid_registers_zero; /* Register arguments to CPUID paired with the results that came back. */ struct cpuid_query_result { struct cpuid_query q; struct cpuid_registers r; }; /* During a first enumeration pass, we try to collect data for cpuid_initial_subleaf_limit subleaves per leaf/EAX value. If we run out of space, we try once more with applying the lower limit. */ enum { cpuid_main_leaf_limit = 128 }; enum { cpuid_initial_subleaf_limit = 512 }; enum { cpuid_subleaf_limit = 32 }; /* Offset of the extended leaf area. */ enum {cpuid_extended_leaf_offset = 0x80000000 }; /* Collected CPUID data. Everything is stored in a statically sized array that is sized so that the second pass will collect some data for all leaves, after the limit is applied. On the second pass, ecx_limit is set to cpuid_subleaf_limit. */ struct cpuid_collected_data { unsigned int used; unsigned int ecx_limit; uint64_t xgetbv_ecx_0; struct cpuid_query_result qr[cpuid_main_leaf_limit * 2 * cpuid_subleaf_limit]; }; /* Fill in the result of a CPUID query. Returns true if there is room, false if nothing could be stored. */ static bool _dl_diagnostics_cpuid_store (struct cpuid_collected_data *ccd, unsigned eax, int ecx) { if (ccd->used >= array_length (ccd->qr)) return false; /* Tentatively fill in the next value. */ __cpuid_count (eax, ecx, ccd->qr[ccd->used].r.eax, ccd->qr[ccd->used].r.ebx, ccd->qr[ccd->used].r.ecx, ccd->qr[ccd->used].r.edx); /* If the ECX subleaf is next subleaf after the previous one (for the same leaf), and the values are the same, merge the result with the already-stored one. Do this before skipping zero leaves, which avoids artifiacts for ECX == 256 queries. */ if (ccd->used > 0 && ccd->qr[ccd->used - 1].q.eax == eax && ccd->qr[ccd->used - 1].q.ecx_last + 1 == ecx) { /* Exact match of the previous result. Ignore the value of ecx_preserves_query_byte if this is a singleton range so far because we can treat ECX as fixed if the same value repeats. */ if ((!ccd->qr[ccd->used - 1].q.ecx_preserves_query_byte || (ccd->qr[ccd->used - 1].q.ecx_first == ccd->qr[ccd->used - 1].q.ecx_last)) && memcmp (&ccd->qr[ccd->used - 1].r, &ccd->qr[ccd->used].r, sizeof (ccd->qr[ccd->used].r)) == 0) { ccd->qr[ccd->used - 1].q.ecx_last = ecx; /* ECX is now fixed because the same value has been observed twice, even if we had a low-byte match before. */ ccd->qr[ccd->used - 1].q.ecx_preserves_query_byte = false; return true; } /* Match except for the low byte in ECX, which must match the incoming ECX value. */ if (ccd->qr[ccd->used - 1].q.ecx_preserves_query_byte && (ecx & 0xff) == (ccd->qr[ccd->used].r.ecx & 0xff) && ccd->qr[ccd->used].r.eax == ccd->qr[ccd->used - 1].r.eax && ccd->qr[ccd->used].r.ebx == ccd->qr[ccd->used - 1].r.ebx && ((ccd->qr[ccd->used].r.ecx & 0xffffff00) == (ccd->qr[ccd->used - 1].r.ecx & 0xffffff00)) && ccd->qr[ccd->used].r.edx == ccd->qr[ccd->used - 1].r.edx) { ccd->qr[ccd->used - 1].q.ecx_last = ecx; return true; } } /* Do not store zero results. All-zero values usually mean that the subleaf is unsupported. */ if (ccd->qr[ccd->used].r.eax == 0 && ccd->qr[ccd->used].r.ebx == 0 && ccd->qr[ccd->used].r.ecx == 0 && ccd->qr[ccd->used].r.edx == 0) return true; /* The result needs to be stored. Fill in the query parameters and consume the storage. */ ccd->qr[ccd->used].q.eax = eax; ccd->qr[ccd->used].q.ecx_first = ecx; ccd->qr[ccd->used].q.ecx_last = ecx; ccd->qr[ccd->used].q.ecx_preserves_query_byte = (ecx & 0xff) == (ccd->qr[ccd->used].r.ecx & 0xff); ++ccd->used; return true; } /* Collected CPUID data into *CCD. If LIMIT, apply per-leaf limits to avoid exceeding the pre-allocated space. Return true if all data could be stored, false if the retrying without a limit is requested. */ static bool _dl_diagnostics_cpuid_collect_1 (struct cpuid_collected_data *ccd, bool limit) { ccd->used = 0; ccd->ecx_limit = (limit ? cpuid_subleaf_limit : cpuid_initial_subleaf_limit) - 1; _dl_diagnostics_cpuid_store (ccd, 0x00, 0x00); if (ccd->used == 0) /* CPUID reported all 0. Should not happen. */ return true; unsigned int maximum_leaf = ccd->qr[0x00].r.eax; if (limit && maximum_leaf >= cpuid_main_leaf_limit) maximum_leaf = cpuid_main_leaf_limit - 1; for (unsigned int eax = 1; eax <= maximum_leaf; ++eax) { for (unsigned int ecx = 0; ecx <= ccd->ecx_limit; ++ecx) if (!_dl_diagnostics_cpuid_store (ccd, eax, ecx)) return false; } if (!_dl_diagnostics_cpuid_store (ccd, cpuid_extended_leaf_offset, 0x00)) return false; maximum_leaf = ccd->qr[ccd->used - 1].r.eax; if (maximum_leaf < cpuid_extended_leaf_offset) /* No extended CPUID information. */ return true; if (limit && maximum_leaf - cpuid_extended_leaf_offset >= cpuid_main_leaf_limit) maximum_leaf = cpuid_extended_leaf_offset + cpuid_main_leaf_limit - 1; for (unsigned int eax = cpuid_extended_leaf_offset + 1; eax <= maximum_leaf; ++eax) { for (unsigned int ecx = 0; ecx <= ccd->ecx_limit; ++ecx) if (!_dl_diagnostics_cpuid_store (ccd, eax, ecx)) return false; } return true; } /* Call _dl_diagnostics_cpuid_collect_1 twice if necessary, the second time with the limit applied. */ static void _dl_diagnostics_cpuid_collect (struct cpuid_collected_data *ccd) { if (!_dl_diagnostics_cpuid_collect_1 (ccd, false)) _dl_diagnostics_cpuid_collect_1 (ccd, true); /* Re-use the result of the official feature probing here. */ const struct cpu_features *cpu_features = __get_cpu_features (); if (CPU_FEATURES_CPU_P (cpu_features, OSXSAVE)) { unsigned int xcrlow; unsigned int xcrhigh; asm ("xgetbv" : "=a" (xcrlow), "=d" (xcrhigh) : "c" (0)); ccd->xgetbv_ecx_0 = ((uint64_t) xcrhigh << 32) + xcrlow; } else ccd->xgetbv_ecx_0 = 0; } /* Print a CPUID register value (passed as REG_VALUE) if it differs from the expected REG_REFERENCE value. PROCESSOR_INDEX is the process sequence number (always starting at zero; not a kernel ID). */ static void _dl_diagnostics_cpuid_print_reg (unsigned int processor_index, const struct cpuid_query *q, const char *reg_label, unsigned int reg_value, bool subleaf) { if (subleaf) _dl_printf ("x86.processor[0x%x].cpuid.subleaf_eax[0x%x]" ".ecx[0x%x].%s=0x%x\n", processor_index, q->eax, q->ecx_first, reg_label, reg_value); else _dl_printf ("x86.processor[0x%x].cpuid.eax[0x%x].%s=0x%x\n", processor_index, q->eax, reg_label, reg_value); } /* Print CPUID result values in *RESULT for the query in CCD->qr[CCD_IDX]. PROCESSOR_INDEX is the process sequence number (always starting at zero; not a kernel ID). */ static void _dl_diagnostics_cpuid_print_query (unsigned int processor_index, struct cpuid_collected_data *ccd, unsigned int ccd_idx, const struct cpuid_registers *result) { /* Treat this as a value if subleaves if ecx isn't zero (maybe within the [ecx_fist, ecx_last] range), or if eax matches its neighbors. If the range is [0, ecx_limit], then the subleaves are not distinct (independently of ecx_preserves_query_byte), so do not report them separately. */ struct cpuid_query *q = &ccd->qr[ccd_idx].q; bool subleaf = (q->ecx_first > 0 || (q->ecx_first != q->ecx_last && !(q->ecx_first == 0 && q->ecx_last == ccd->ecx_limit)) || (ccd_idx > 0 && q->eax == ccd->qr[ccd_idx - 1].q.eax) || (ccd_idx + 1 < ccd->used && q->eax == ccd->qr[ccd_idx + 1].q.eax)); _dl_diagnostics_cpuid_print_reg (processor_index, q, "eax", result->eax, subleaf); _dl_diagnostics_cpuid_print_reg (processor_index, q, "ebx", result->ebx, subleaf); _dl_diagnostics_cpuid_print_reg (processor_index, q, "ecx", result->ecx, subleaf); _dl_diagnostics_cpuid_print_reg (processor_index, q, "edx", result->edx, subleaf); if (subleaf && q->ecx_first != q->ecx_last) { _dl_printf ("x86.processor[0x%x].cpuid.subleaf_eax[0x%x]" ".ecx[0x%x].until_ecx=0x%x\n", processor_index, q->eax, q->ecx_first, q->ecx_last); if (q->ecx_preserves_query_byte) _dl_printf ("x86.processor[0x%x].cpuid.subleaf_eax[0x%x]" ".ecx[0x%x].ecx_query_mask=0xff\n", processor_index, q->eax, q->ecx_first); } } /* Perform differential reporting of the data in *CURRENT against *BASE. REQUESTED_CPU is the kernel CPU ID the thread was configured to run on, or -1 if no configuration was possible. PROCESSOR_INDEX is the process sequence number (always starting at zero; not a kernel ID). */ static void _dl_diagnostics_cpuid_report (struct dl_iterate_cpu *dci, struct cpuid_collected_data *current, struct cpuid_collected_data *base) { if (dci->requested_cpu >= 0) _dl_printf ("x86.processor[0x%x].requested=0x%x\n", dci->processor_index, dci->requested_cpu); if (dci->actual_cpu >= 0) _dl_printf ("x86.processor[0x%x].observed=0x%x\n", dci->processor_index, dci->actual_cpu); if (dci->actual_node >= 0) _dl_printf ("x86.processor[0x%x].observed_node=0x%x\n", dci->processor_index, dci->actual_node); _dl_printf ("x86.processor[0x%x].cpuid_leaves=0x%x\n", dci->processor_index, current->used); _dl_printf ("x86.processor[0x%x].ecx_limit=0x%x\n", dci->processor_index, current->ecx_limit); unsigned int base_idx = 0; for (unsigned int current_idx = 0; current_idx < current->used; ++current_idx) { /* Report missing data on the current CPU as 0. */ unsigned long long int current_query = cpuid_query_combined (¤t->qr[current_idx].q); while (base_idx < base->used && cpuid_query_combined (&base->qr[base_idx].q) < current_query) { _dl_diagnostics_cpuid_print_query (dci->processor_index, base, base_idx, &cpuid_registers_zero); ++base_idx; } if (base_idx < base->used && cpuid_query_combined (&base->qr[base_idx].q) == current_query) { _Static_assert (sizeof (struct cpuid_registers) == 4 * 4, "no padding in struct cpuid_registers"); if (current->qr[current_idx].q.ecx_last != base->qr[base_idx].q.ecx_last || memcmp (¤t->qr[current_idx].r, &base->qr[base_idx].r, sizeof (struct cpuid_registers)) != 0) /* The ECX range or the values have changed. Show the new values. */ _dl_diagnostics_cpuid_print_query (dci->processor_index, current, current_idx, ¤t->qr[current_idx].r); ++base_idx; } else /* Data is absent in the base reference. Report the new data. */ _dl_diagnostics_cpuid_print_query (dci->processor_index, current, current_idx, ¤t->qr[current_idx].r); } if (current->xgetbv_ecx_0 != base->xgetbv_ecx_0) { /* Re-use the 64-bit printing routine. */ _dl_printf ("x86.processor[0x%x].", dci->processor_index); _dl_diagnostics_print_labeled_value ("xgetbv.ecx[0x0]", current->xgetbv_ecx_0); } } static void _dl_diagnostics_cpuid (void) { #if !HAS_CPUID /* CPUID is not supported, so there is nothing to dump. */ if (__get_cpuid_max (0, 0) == 0) return; #endif struct dl_iterate_cpu dic; _dl_iterate_cpu_init (&dic); /* Two copies of the data are used. Data is written to the index (dic.processor_index & 1). The previous version against which the data dump is reported is at index !(processor_index & 1). */ struct cpuid_collected_data ccd[2]; /* The initial data is presumed to be all zero. Zero results are not recorded. */ ccd[1].used = 0; ccd[1].xgetbv_ecx_0 = 0; /* Run the CPUID probing on a specific CPU. There are expected differences for encoding core IDs and topology information in CPUID output, but some firmware/kernel bugs also may result in asymmetric data across CPUs in some cases. */ while (_dl_iterate_cpu_next (&dic)) { _dl_diagnostics_cpuid_collect (&ccd[dic.processor_index & 1]); _dl_diagnostics_cpuid_report (&dic, &ccd[dic.processor_index & 1], &ccd[!(dic.processor_index & 1)]); } }