/* Initialize CPU feature data. This file is part of the GNU C Library. Copyright (C) 2008-2020 Free Software Foundation, Inc. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #if HAVE_TUNABLES # define TUNABLE_NAMESPACE cpu # include /* Get STDOUT_FILENO for _dl_printf. */ # include extern void TUNABLE_CALLBACK (set_hwcaps) (tunable_val_t *) attribute_hidden; # if CET_ENABLED extern void TUNABLE_CALLBACK (set_x86_ibt) (tunable_val_t *) attribute_hidden; extern void TUNABLE_CALLBACK (set_x86_shstk) (tunable_val_t *) attribute_hidden; # endif #endif #if CET_ENABLED # include # include #endif static void get_extended_indices (struct cpu_features *cpu_features) { unsigned int eax, ebx, ecx, edx; __cpuid (0x80000000, eax, ebx, ecx, edx); if (eax >= 0x80000001) __cpuid (0x80000001, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].edx); if (eax >= 0x80000007) __cpuid (0x80000007, cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].edx); if (eax >= 0x80000008) __cpuid (0x80000008, cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].edx); } static void get_common_indices (struct cpu_features *cpu_features, unsigned int *family, unsigned int *model, unsigned int *extended_model, unsigned int *stepping) { if (family) { unsigned int eax; __cpuid (1, eax, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_1].edx); cpu_features->cpuid[COMMON_CPUID_INDEX_1].eax = eax; *family = (eax >> 8) & 0x0f; *model = (eax >> 4) & 0x0f; *extended_model = (eax >> 12) & 0xf0; *stepping = eax & 0x0f; if (*family == 0x0f) { *family += (eax >> 20) & 0xff; *model += *extended_model; } } if (cpu_features->basic.max_cpuid >= 7) __cpuid_count (7, 0, cpu_features->cpuid[COMMON_CPUID_INDEX_7].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_7].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_7].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_7].edx); if (cpu_features->basic.max_cpuid >= 0xd) __cpuid_count (0xd, 1, cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].edx); /* Can we call xgetbv? */ if (CPU_FEATURES_CPU_P (cpu_features, OSXSAVE)) { unsigned int xcrlow; unsigned int xcrhigh; asm ("xgetbv" : "=a" (xcrlow), "=d" (xcrhigh) : "c" (0)); /* Is YMM and XMM state usable? */ if ((xcrlow & (bit_YMM_state | bit_XMM_state)) == (bit_YMM_state | bit_XMM_state)) { /* Determine if AVX is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX)) { cpu_features->feature[index_arch_AVX_Usable] |= bit_arch_AVX_Usable; /* The following features depend on AVX being usable. */ /* Determine if AVX2 is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX2)) { cpu_features->feature[index_arch_AVX2_Usable] |= bit_arch_AVX2_Usable; /* Unaligned load with 256-bit AVX registers are faster on Intel/AMD processors with AVX2. */ cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load] |= bit_arch_AVX_Fast_Unaligned_Load; } /* Determine if FMA is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, FMA)) cpu_features->feature[index_arch_FMA_Usable] |= bit_arch_FMA_Usable; /* Determine if VAES is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, VAES)) cpu_features->feature[index_arch_VAES_Usable] |= bit_arch_VAES_Usable; /* Determine if VPCLMULQDQ is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, VPCLMULQDQ)) cpu_features->feature[index_arch_VPCLMULQDQ_Usable] |= bit_arch_VPCLMULQDQ_Usable; /* Determine if XOP is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, XOP)) cpu_features->feature[index_arch_XOP_Usable] |= bit_arch_XOP_Usable; } /* Check if OPMASK state, upper 256-bit of ZMM0-ZMM15 and ZMM16-ZMM31 state are enabled. */ if ((xcrlow & (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state)) == (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state)) { /* Determine if AVX512F is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512F)) { cpu_features->feature[index_arch_AVX512F_Usable] |= bit_arch_AVX512F_Usable; /* Determine if AVX512CD is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512CD)) cpu_features->feature[index_arch_AVX512CD_Usable] |= bit_arch_AVX512CD_Usable; /* Determine if AVX512ER is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER)) cpu_features->feature[index_arch_AVX512ER_Usable] |= bit_arch_AVX512ER_Usable; /* Determine if AVX512PF is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF)) cpu_features->feature[index_arch_AVX512PF_Usable] |= bit_arch_AVX512PF_Usable; /* Determine if AVX512VL is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512VL)) cpu_features->feature[index_arch_AVX512VL_Usable] |= bit_arch_AVX512VL_Usable; /* Determine if AVX512DQ is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512DQ)) cpu_features->feature[index_arch_AVX512DQ_Usable] |= bit_arch_AVX512DQ_Usable; /* Determine if AVX512BW is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW)) cpu_features->feature[index_arch_AVX512BW_Usable] |= bit_arch_AVX512BW_Usable; /* Determine if AVX512_4FMAPS is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4FMAPS)) cpu_features->feature[index_arch_AVX512_4FMAPS_Usable] |= bit_arch_AVX512_4FMAPS_Usable; /* Determine if AVX512_4VNNIW is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4VNNIW)) cpu_features->feature[index_arch_AVX512_4VNNIW_Usable] |= bit_arch_AVX512_4VNNIW_Usable; /* Determine if AVX512_BITALG is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_BITALG)) cpu_features->feature[index_arch_AVX512_BITALG_Usable] |= bit_arch_AVX512_BITALG_Usable; /* Determine if AVX512_IFMA is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_IFMA)) cpu_features->feature[index_arch_AVX512_IFMA_Usable] |= bit_arch_AVX512_IFMA_Usable; /* Determine if AVX512_VBMI is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI)) cpu_features->feature[index_arch_AVX512_VBMI_Usable] |= bit_arch_AVX512_VBMI_Usable; /* Determine if AVX512_VBMI2 is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI2)) cpu_features->feature[index_arch_AVX512_VBMI2_Usable] |= bit_arch_AVX512_VBMI2_Usable; /* Determine if is AVX512_VNNI usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VNNI)) cpu_features->feature[index_arch_AVX512_VNNI_Usable] |= bit_arch_AVX512_VNNI_Usable; /* Determine if AVX512_VPOPCNTDQ is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VPOPCNTDQ)) cpu_features->feature[index_arch_AVX512_VPOPCNTDQ_Usable] |= bit_arch_AVX512_VPOPCNTDQ_Usable; } } } /* For _dl_runtime_resolve, set xsave_state_size to xsave area size + integer register save size and align it to 64 bytes. */ if (cpu_features->basic.max_cpuid >= 0xd) { unsigned int eax, ebx, ecx, edx; __cpuid_count (0xd, 0, eax, ebx, ecx, edx); if (ebx != 0) { unsigned int xsave_state_full_size = ALIGN_UP (ebx + STATE_SAVE_OFFSET, 64); cpu_features->xsave_state_size = xsave_state_full_size; cpu_features->xsave_state_full_size = xsave_state_full_size; /* Check if XSAVEC is available. */ if (CPU_FEATURES_CPU_P (cpu_features, XSAVEC)) { unsigned int xstate_comp_offsets[32]; unsigned int xstate_comp_sizes[32]; unsigned int i; xstate_comp_offsets[0] = 0; xstate_comp_offsets[1] = 160; xstate_comp_offsets[2] = 576; xstate_comp_sizes[0] = 160; xstate_comp_sizes[1] = 256; for (i = 2; i < 32; i++) { if ((STATE_SAVE_MASK & (1 << i)) != 0) { __cpuid_count (0xd, i, eax, ebx, ecx, edx); xstate_comp_sizes[i] = eax; } else { ecx = 0; xstate_comp_sizes[i] = 0; } if (i > 2) { xstate_comp_offsets[i] = (xstate_comp_offsets[i - 1] + xstate_comp_sizes[i -1]); if ((ecx & (1 << 1)) != 0) xstate_comp_offsets[i] = ALIGN_UP (xstate_comp_offsets[i], 64); } } /* Use XSAVEC. */ unsigned int size = xstate_comp_offsets[31] + xstate_comp_sizes[31]; if (size) { cpu_features->xsave_state_size = ALIGN_UP (size + STATE_SAVE_OFFSET, 64); cpu_features->feature[index_arch_XSAVEC_Usable] |= bit_arch_XSAVEC_Usable; } } } } } } _Static_assert (((index_arch_Fast_Unaligned_Load == index_arch_Fast_Unaligned_Copy) && (index_arch_Fast_Unaligned_Load == index_arch_Prefer_PMINUB_for_stringop) && (index_arch_Fast_Unaligned_Load == index_arch_Slow_SSE4_2) && (index_arch_Fast_Unaligned_Load == index_arch_Fast_Rep_String) && (index_arch_Fast_Unaligned_Load == index_arch_Fast_Copy_Backward)), "Incorrect index_arch_Fast_Unaligned_Load"); static inline void init_cpu_features (struct cpu_features *cpu_features) { unsigned int ebx, ecx, edx; unsigned int family = 0; unsigned int model = 0; unsigned int stepping = 0; enum cpu_features_kind kind; #if !HAS_CPUID if (__get_cpuid_max (0, 0) == 0) { kind = arch_kind_other; goto no_cpuid; } #endif __cpuid (0, cpu_features->basic.max_cpuid, ebx, ecx, edx); /* This spells out "GenuineIntel". */ if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69) { unsigned int extended_model; kind = arch_kind_intel; get_common_indices (cpu_features, &family, &model, &extended_model, &stepping); get_extended_indices (cpu_features); if (family == 0x06) { model += extended_model; switch (model) { case 0x1c: case 0x26: /* BSF is slow on Atom. */ cpu_features->feature[index_arch_Slow_BSF] |= bit_arch_Slow_BSF; break; case 0x57: /* Knights Landing. Enable Silvermont optimizations. */ case 0x5c: case 0x5f: /* Unaligned load versions are faster than SSSE3 on Goldmont. */ case 0x4c: /* Airmont is a die shrink of Silvermont. */ case 0x37: case 0x4a: case 0x4d: case 0x5a: case 0x5d: /* Unaligned load versions are faster than SSSE3 on Silvermont. */ cpu_features->feature[index_arch_Fast_Unaligned_Load] |= (bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Unaligned_Copy | bit_arch_Prefer_PMINUB_for_stringop | bit_arch_Slow_SSE4_2); break; default: /* Unknown family 0x06 processors. Assuming this is one of Core i3/i5/i7 processors if AVX is available. */ if (!CPU_FEATURES_CPU_P (cpu_features, AVX)) break; /* Fall through. */ case 0x1a: case 0x1e: case 0x1f: case 0x25: case 0x2c: case 0x2e: case 0x2f: /* Rep string instructions, unaligned load, unaligned copy, and pminub are fast on Intel Core i3, i5 and i7. */ cpu_features->feature[index_arch_Fast_Rep_String] |= (bit_arch_Fast_Rep_String | bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Unaligned_Copy | bit_arch_Prefer_PMINUB_for_stringop); break; } /* Disable TSX on some Haswell processors to avoid TSX on kernels that weren't updated with the latest microcode package (which disables broken feature by default). */ switch (model) { case 0x3f: /* Xeon E7 v3 with stepping >= 4 has working TSX. */ if (stepping >= 4) break; /* Fall through. */ case 0x3c: case 0x45: case 0x46: /* Disable Intel TSX on Haswell processors (except Xeon E7 v3 with stepping >= 4) to avoid TSX on kernels that weren't updated with the latest microcode package (which disables broken feature by default). */ cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM; break; } } /* Since AVX512ER is unique to Xeon Phi, set Prefer_No_VZEROUPPER if AVX512ER is available. Don't use AVX512 to avoid lower CPU frequency if AVX512ER isn't available. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER)) cpu_features->feature[index_arch_Prefer_No_VZEROUPPER] |= bit_arch_Prefer_No_VZEROUPPER; else { cpu_features->feature[index_arch_Prefer_No_AVX512] |= bit_arch_Prefer_No_AVX512; /* Avoid RTM abort triggered by VZEROUPPER inside a transactionally executing RTM region. */ if (CPU_FEATURES_CPU_P (cpu_features, RTM)) cpu_features->feature[index_arch_Prefer_No_VZEROUPPER] |= bit_arch_Prefer_No_VZEROUPPER; /* Since to compare 2 32-byte strings, 256-bit EVEX strcmp requires 2 loads, 3 VPCMPs and 2 KORDs while AVX2 strcmp requires 1 load, 2 VPCMPEQs, 1 VPMINU and 1 VPMOVMSKB, AVX2 strcmp is faster than EVEX strcmp. */ if (CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable)) cpu_features->feature[index_arch_Prefer_AVX2_STRCMP] |= bit_arch_Prefer_AVX2_STRCMP; } } /* This spells out "AuthenticAMD" or "HygonGenuine". */ else if ((ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65) || (ebx == 0x6f677948 && ecx == 0x656e6975 && edx == 0x6e65476e)) { unsigned int extended_model; kind = arch_kind_amd; get_common_indices (cpu_features, &family, &model, &extended_model, &stepping); get_extended_indices (cpu_features); ecx = cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx; if (HAS_ARCH_FEATURE (AVX_Usable)) { /* Since the FMA4 bit is in COMMON_CPUID_INDEX_80000001 and FMA4 requires AVX, determine if FMA4 is usable here. */ if (CPU_FEATURES_CPU_P (cpu_features, FMA4)) cpu_features->feature[index_arch_FMA4_Usable] |= bit_arch_FMA4_Usable; } if (family == 0x15) { /* "Excavator" */ if (model >= 0x60 && model <= 0x7f) { cpu_features->feature[index_arch_Fast_Unaligned_Load] |= (bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Copy_Backward); /* Unaligned AVX loads are slower.*/ cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load] &= ~bit_arch_AVX_Fast_Unaligned_Load; } } } else { kind = arch_kind_other; get_common_indices (cpu_features, NULL, NULL, NULL, NULL); } /* Support i586 if CX8 is available. */ if (CPU_FEATURES_CPU_P (cpu_features, CX8)) cpu_features->feature[index_arch_I586] |= bit_arch_I586; /* Support i686 if CMOV is available. */ if (CPU_FEATURES_CPU_P (cpu_features, CMOV)) cpu_features->feature[index_arch_I686] |= bit_arch_I686; #if !HAS_CPUID no_cpuid: #endif cpu_features->basic.kind = kind; cpu_features->basic.family = family; cpu_features->basic.model = model; cpu_features->basic.stepping = stepping; #if HAVE_TUNABLES TUNABLE_GET (hwcaps, tunable_val_t *, TUNABLE_CALLBACK (set_hwcaps)); cpu_features->non_temporal_threshold = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL); cpu_features->data_cache_size = TUNABLE_GET (x86_data_cache_size, long int, NULL); cpu_features->shared_cache_size = TUNABLE_GET (x86_shared_cache_size, long int, NULL); #endif /* Reuse dl_platform, dl_hwcap and dl_hwcap_mask for x86. */ #if !HAVE_TUNABLES && defined SHARED /* The glibc.cpu.hwcap_mask tunable is initialized already, so no need to do this. */ GLRO(dl_hwcap_mask) = HWCAP_IMPORTANT; #endif #ifdef __x86_64__ GLRO(dl_hwcap) = HWCAP_X86_64; if (cpu_features->basic.kind == arch_kind_intel) { const char *platform = NULL; if (CPU_FEATURES_ARCH_P (cpu_features, AVX512F_Usable) && CPU_FEATURES_CPU_P (cpu_features, AVX512CD)) { if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER)) { if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF)) platform = "xeon_phi"; } else { if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW) && CPU_FEATURES_CPU_P (cpu_features, AVX512DQ) && CPU_FEATURES_CPU_P (cpu_features, AVX512VL)) GLRO(dl_hwcap) |= HWCAP_X86_AVX512_1; } } if (platform == NULL && CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable) && CPU_FEATURES_ARCH_P (cpu_features, FMA_Usable) && CPU_FEATURES_CPU_P (cpu_features, BMI1) && CPU_FEATURES_CPU_P (cpu_features, BMI2) && CPU_FEATURES_CPU_P (cpu_features, LZCNT) && CPU_FEATURES_CPU_P (cpu_features, MOVBE) && CPU_FEATURES_CPU_P (cpu_features, POPCNT)) platform = "haswell"; if (platform != NULL) GLRO(dl_platform) = platform; } #else GLRO(dl_hwcap) = 0; if (CPU_FEATURES_CPU_P (cpu_features, SSE2)) GLRO(dl_hwcap) |= HWCAP_X86_SSE2; if (CPU_FEATURES_ARCH_P (cpu_features, I686)) GLRO(dl_platform) = "i686"; else if (CPU_FEATURES_ARCH_P (cpu_features, I586)) GLRO(dl_platform) = "i586"; #endif #if CET_ENABLED # if HAVE_TUNABLES TUNABLE_GET (x86_ibt, tunable_val_t *, TUNABLE_CALLBACK (set_x86_ibt)); TUNABLE_GET (x86_shstk, tunable_val_t *, TUNABLE_CALLBACK (set_x86_shstk)); # endif /* Check CET status. */ unsigned int cet_status = get_cet_status (); if (cet_status) { GL(dl_x86_feature_1)[0] = cet_status; # ifndef SHARED /* Check if IBT and SHSTK are enabled by kernel. */ if ((cet_status & GNU_PROPERTY_X86_FEATURE_1_IBT) || (cet_status & GNU_PROPERTY_X86_FEATURE_1_SHSTK)) { /* Disable IBT and/or SHSTK if they are enabled by kernel, but disabled by environment variable: GLIBC_TUNABLES=glibc.cpu.hwcaps=-IBT,-SHSTK */ unsigned int cet_feature = 0; if (!HAS_CPU_FEATURE (IBT)) cet_feature |= GNU_PROPERTY_X86_FEATURE_1_IBT; if (!HAS_CPU_FEATURE (SHSTK)) cet_feature |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; if (cet_feature) { int res = dl_cet_disable_cet (cet_feature); /* Clear the disabled bits in dl_x86_feature_1. */ if (res == 0) GL(dl_x86_feature_1)[0] &= ~cet_feature; } /* Lock CET if IBT or SHSTK is enabled in executable. Don't lock CET if SHSTK is enabled permissively. */ if (((GL(dl_x86_feature_1)[1] >> CET_MAX) & ((1 << CET_MAX) - 1)) != CET_PERMISSIVE) dl_cet_lock_cet (); } # endif } #endif }