/* Initialize CPU feature data. This file is part of the GNU C Library. Copyright (C) 2008-2018 Free Software Foundation, Inc. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #if HAVE_TUNABLES # define TUNABLE_NAMESPACE tune # include /* Get STDOUT_FILENO for _dl_printf. */ # include extern void TUNABLE_CALLBACK (set_hwcaps) (tunable_val_t *) attribute_hidden; # if CET_ENABLED extern void TUNABLE_CALLBACK (set_x86_ibt) (tunable_val_t *) attribute_hidden; extern void TUNABLE_CALLBACK (set_x86_shstk) (tunable_val_t *) attribute_hidden; # endif #endif #if CET_ENABLED # include # include #endif static void get_extended_indices (struct cpu_features *cpu_features) { unsigned int eax, ebx, ecx, edx; __cpuid (0x80000000, eax, ebx, ecx, edx); if (eax >= 0x80000001) __cpuid (0x80000001, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].edx); } static void get_common_indeces (struct cpu_features *cpu_features, unsigned int *family, unsigned int *model, unsigned int *extended_model, unsigned int *stepping) { if (family) { unsigned int eax; __cpuid (1, eax, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_1].edx); cpu_features->cpuid[COMMON_CPUID_INDEX_1].eax = eax; *family = (eax >> 8) & 0x0f; *model = (eax >> 4) & 0x0f; *extended_model = (eax >> 12) & 0xf0; *stepping = eax & 0x0f; if (*family == 0x0f) { *family += (eax >> 20) & 0xff; *model += *extended_model; } } if (cpu_features->max_cpuid >= 7) __cpuid_count (7, 0, cpu_features->cpuid[COMMON_CPUID_INDEX_7].eax, cpu_features->cpuid[COMMON_CPUID_INDEX_7].ebx, cpu_features->cpuid[COMMON_CPUID_INDEX_7].ecx, cpu_features->cpuid[COMMON_CPUID_INDEX_7].edx); /* Can we call xgetbv? */ if (CPU_FEATURES_CPU_P (cpu_features, OSXSAVE)) { unsigned int xcrlow; unsigned int xcrhigh; asm ("xgetbv" : "=a" (xcrlow), "=d" (xcrhigh) : "c" (0)); /* Is YMM and XMM state usable? */ if ((xcrlow & (bit_YMM_state | bit_XMM_state)) == (bit_YMM_state | bit_XMM_state)) { /* Determine if AVX is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX)) { cpu_features->feature[index_arch_AVX_Usable] |= bit_arch_AVX_Usable; /* The following features depend on AVX being usable. */ /* Determine if AVX2 is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX2)) { cpu_features->feature[index_arch_AVX2_Usable] |= bit_arch_AVX2_Usable; /* Unaligned load with 256-bit AVX registers are faster on Intel/AMD processors with AVX2. */ cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load] |= bit_arch_AVX_Fast_Unaligned_Load; } /* Determine if FMA is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, FMA)) cpu_features->feature[index_arch_FMA_Usable] |= bit_arch_FMA_Usable; } /* Check if OPMASK state, upper 256-bit of ZMM0-ZMM15 and ZMM16-ZMM31 state are enabled. */ if ((xcrlow & (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state)) == (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state)) { /* Determine if AVX512F is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512F)) { cpu_features->feature[index_arch_AVX512F_Usable] |= bit_arch_AVX512F_Usable; /* Determine if AVX512VL is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512VL)) cpu_features->feature[index_arch_AVX512VL_Usable] |= bit_arch_AVX512VL_Usable; /* Determine if AVX512BW is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW)) cpu_features->feature[index_arch_AVX512BW_Usable] |= bit_arch_AVX512BW_Usable; /* Determine if AVX512DQ is usable. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512DQ)) cpu_features->feature[index_arch_AVX512DQ_Usable] |= bit_arch_AVX512DQ_Usable; } } } /* For _dl_runtime_resolve, set xsave_state_size to xsave area size + integer register save size and align it to 64 bytes. */ if (cpu_features->max_cpuid >= 0xd) { unsigned int eax, ebx, ecx, edx; __cpuid_count (0xd, 0, eax, ebx, ecx, edx); if (ebx != 0) { unsigned int xsave_state_full_size = ALIGN_UP (ebx + STATE_SAVE_OFFSET, 64); cpu_features->xsave_state_size = xsave_state_full_size; cpu_features->xsave_state_full_size = xsave_state_full_size; __cpuid_count (0xd, 1, eax, ebx, ecx, edx); /* Check if XSAVEC is available. */ if ((eax & (1 << 1)) != 0) { unsigned int xstate_comp_offsets[32]; unsigned int xstate_comp_sizes[32]; unsigned int i; xstate_comp_offsets[0] = 0; xstate_comp_offsets[1] = 160; xstate_comp_offsets[2] = 576; xstate_comp_sizes[0] = 160; xstate_comp_sizes[1] = 256; for (i = 2; i < 32; i++) { if ((STATE_SAVE_MASK & (1 << i)) != 0) { __cpuid_count (0xd, i, eax, ebx, ecx, edx); xstate_comp_sizes[i] = eax; } else { ecx = 0; xstate_comp_sizes[i] = 0; } if (i > 2) { xstate_comp_offsets[i] = (xstate_comp_offsets[i - 1] + xstate_comp_sizes[i -1]); if ((ecx & (1 << 1)) != 0) xstate_comp_offsets[i] = ALIGN_UP (xstate_comp_offsets[i], 64); } } /* Use XSAVEC. */ unsigned int size = xstate_comp_offsets[31] + xstate_comp_sizes[31]; if (size) { cpu_features->xsave_state_size = ALIGN_UP (size + STATE_SAVE_OFFSET, 64); cpu_features->feature[index_arch_XSAVEC_Usable] |= bit_arch_XSAVEC_Usable; } } } } } } static inline void init_cpu_features (struct cpu_features *cpu_features) { unsigned int ebx, ecx, edx; unsigned int family = 0; unsigned int model = 0; enum cpu_features_kind kind; #if !HAS_CPUID if (__get_cpuid_max (0, 0) == 0) { kind = arch_kind_other; goto no_cpuid; } #endif __cpuid (0, cpu_features->max_cpuid, ebx, ecx, edx); /* This spells out "GenuineIntel". */ if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69) { unsigned int extended_model, stepping; kind = arch_kind_intel; get_common_indeces (cpu_features, &family, &model, &extended_model, &stepping); get_extended_indices (cpu_features); if (CPU_FEATURES_CPU_P (cpu_features, RTM_ALWAYS_ABORT)) cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM; if (family == 0x06) { model += extended_model; switch (model) { case 0x1c: case 0x26: /* BSF is slow on Atom. */ cpu_features->feature[index_arch_Slow_BSF] |= bit_arch_Slow_BSF; break; case 0x57: /* Knights Landing. Enable Silvermont optimizations. */ case 0x5c: case 0x5f: /* Unaligned load versions are faster than SSSE3 on Goldmont. */ case 0x4c: /* Airmont is a die shrink of Silvermont. */ case 0x37: case 0x4a: case 0x4d: case 0x5a: case 0x5d: /* Unaligned load versions are faster than SSSE3 on Silvermont. */ #if index_arch_Fast_Unaligned_Load != index_arch_Prefer_PMINUB_for_stringop # error index_arch_Fast_Unaligned_Load != index_arch_Prefer_PMINUB_for_stringop #endif #if index_arch_Fast_Unaligned_Load != index_arch_Slow_SSE4_2 # error index_arch_Fast_Unaligned_Load != index_arch_Slow_SSE4_2 #endif #if index_arch_Fast_Unaligned_Load != index_arch_Fast_Unaligned_Copy # error index_arch_Fast_Unaligned_Load != index_arch_Fast_Unaligned_Copy #endif cpu_features->feature[index_arch_Fast_Unaligned_Load] |= (bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Unaligned_Copy | bit_arch_Prefer_PMINUB_for_stringop | bit_arch_Slow_SSE4_2); break; default: /* Unknown family 0x06 processors. Assuming this is one of Core i3/i5/i7 processors if AVX is available. */ if (!CPU_FEATURES_CPU_P (cpu_features, AVX)) break; case 0x1a: case 0x1e: case 0x1f: case 0x25: case 0x2c: case 0x2e: case 0x2f: /* Rep string instructions, unaligned load, unaligned copy, and pminub are fast on Intel Core i3, i5 and i7. */ #if index_arch_Fast_Rep_String != index_arch_Fast_Unaligned_Load # error index_arch_Fast_Rep_String != index_arch_Fast_Unaligned_Load #endif #if index_arch_Fast_Rep_String != index_arch_Prefer_PMINUB_for_stringop # error index_arch_Fast_Rep_String != index_arch_Prefer_PMINUB_for_stringop #endif #if index_arch_Fast_Rep_String != index_arch_Fast_Unaligned_Copy # error index_arch_Fast_Rep_String != index_arch_Fast_Unaligned_Copy #endif cpu_features->feature[index_arch_Fast_Rep_String] |= (bit_arch_Fast_Rep_String | bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Unaligned_Copy | bit_arch_Prefer_PMINUB_for_stringop); break; } /* Disable TSX on some processors to avoid TSX on kernels that weren't updated with the latest microcode package (which disables broken feature by default). */ switch (model) { case 0x55: if (stepping <= 5) goto disable_tsx; break; case 0x8e: /* NB: Although the errata documents that for model == 0x8e, only 0xb stepping or lower are impacted, the intention of the errata was to disable TSX on all client processors on all steppings. Include 0xc stepping which is an Intel Core i7-8665U, a client mobile processor. */ case 0x9e: if (stepping > 0xc) break; /* Fall through. */ case 0x4e: case 0x5e: { /* Disable Intel TSX and enable RTM_ALWAYS_ABORT for processors listed in: https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html */ disable_tsx: cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM; cpu_features->cpuid[index_cpu_RTM_ALWAYS_ABORT].reg_RTM_ALWAYS_ABORT |= bit_cpu_RTM_ALWAYS_ABORT; } break; case 0x3f: /* Xeon E7 v3 with stepping >= 4 has working TSX. */ if (stepping >= 4) break; case 0x3c: case 0x45: case 0x46: /* Disable Intel TSX on Haswell processors (except Xeon E7 v3 with stepping >= 4) to avoid TSX on kernels that weren't updated with the latest microcode package (which disables broken feature by default). */ cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM; break; } } /* Since AVX512ER is unique to Xeon Phi, set Prefer_No_VZEROUPPER if AVX512ER is available. Don't use AVX512 to avoid lower CPU frequency if AVX512ER isn't available. */ if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER)) cpu_features->feature[index_arch_Prefer_No_VZEROUPPER] |= bit_arch_Prefer_No_VZEROUPPER; else { cpu_features->feature[index_arch_Prefer_No_AVX512] |= bit_arch_Prefer_No_AVX512; /* Avoid RTM abort triggered by VZEROUPPER inside a transactionally executing RTM region. */ if (CPU_FEATURES_CPU_P (cpu_features, RTM)) cpu_features->feature[index_arch_Prefer_No_VZEROUPPER] |= bit_arch_Prefer_No_VZEROUPPER; /* Since to compare 2 32-byte strings, 256-bit EVEX strcmp requires 2 loads, 3 VPCMPs and 2 KORDs while AVX2 strcmp requires 1 load, 2 VPCMPEQs, 1 VPMINU and 1 VPMOVMSKB, AVX2 strcmp is faster than EVEX strcmp. */ if (CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable)) cpu_features->feature[index_arch_Prefer_AVX2_STRCMP] |= bit_arch_Prefer_AVX2_STRCMP; } } /* This spells out "AuthenticAMD". */ else if (ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65) { unsigned int extended_model, stepping; kind = arch_kind_amd; get_common_indeces (cpu_features, &family, &model, &extended_model, &stepping); get_extended_indices (cpu_features); ecx = cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx; if (HAS_ARCH_FEATURE (AVX_Usable)) { /* Since the FMA4 bit is in COMMON_CPUID_INDEX_80000001 and FMA4 requires AVX, determine if FMA4 is usable here. */ if (CPU_FEATURES_CPU_P (cpu_features, FMA4)) cpu_features->feature[index_arch_FMA4_Usable] |= bit_arch_FMA4_Usable; } if (family == 0x15) { #if index_arch_Fast_Unaligned_Load != index_arch_Fast_Copy_Backward # error index_arch_Fast_Unaligned_Load != index_arch_Fast_Copy_Backward #endif /* "Excavator" */ if (model >= 0x60 && model <= 0x7f) { cpu_features->feature[index_arch_Fast_Unaligned_Load] |= (bit_arch_Fast_Unaligned_Load | bit_arch_Fast_Copy_Backward); /* Unaligned AVX loads are slower.*/ cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load] &= ~bit_arch_AVX_Fast_Unaligned_Load; } } } else { kind = arch_kind_other; get_common_indeces (cpu_features, NULL, NULL, NULL, NULL); } /* Support i586 if CX8 is available. */ if (CPU_FEATURES_CPU_P (cpu_features, CX8)) cpu_features->feature[index_arch_I586] |= bit_arch_I586; /* Support i686 if CMOV is available. */ if (CPU_FEATURES_CPU_P (cpu_features, CMOV)) cpu_features->feature[index_arch_I686] |= bit_arch_I686; #if !HAS_CPUID no_cpuid: #endif cpu_features->family = family; cpu_features->model = model; cpu_features->kind = kind; #if HAVE_TUNABLES TUNABLE_GET (hwcaps, tunable_val_t *, TUNABLE_CALLBACK (set_hwcaps)); cpu_features->non_temporal_threshold = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL); cpu_features->data_cache_size = TUNABLE_GET (x86_data_cache_size, long int, NULL); cpu_features->shared_cache_size = TUNABLE_GET (x86_shared_cache_size, long int, NULL); #endif /* Reuse dl_platform, dl_hwcap and dl_hwcap_mask for x86. */ #if !HAVE_TUNABLES && defined SHARED /* The glibc.tune.hwcap_mask tunable is initialized already, so no need to do this. */ GLRO(dl_hwcap_mask) = HWCAP_IMPORTANT; #endif #ifdef __x86_64__ GLRO(dl_hwcap) = HWCAP_X86_64; if (cpu_features->kind == arch_kind_intel) { const char *platform = NULL; if (CPU_FEATURES_ARCH_P (cpu_features, AVX512F_Usable) && CPU_FEATURES_CPU_P (cpu_features, AVX512CD)) { if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER)) { if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF)) platform = "xeon_phi"; } else { if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW) && CPU_FEATURES_CPU_P (cpu_features, AVX512DQ) && CPU_FEATURES_CPU_P (cpu_features, AVX512VL)) GLRO(dl_hwcap) |= HWCAP_X86_AVX512_1; } } if (platform == NULL && CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable) && CPU_FEATURES_ARCH_P (cpu_features, FMA_Usable) && CPU_FEATURES_CPU_P (cpu_features, BMI1) && CPU_FEATURES_CPU_P (cpu_features, BMI2) && CPU_FEATURES_CPU_P (cpu_features, LZCNT) && CPU_FEATURES_CPU_P (cpu_features, MOVBE) && CPU_FEATURES_CPU_P (cpu_features, POPCNT)) platform = "haswell"; if (platform != NULL) GLRO(dl_platform) = platform; } #else GLRO(dl_hwcap) = 0; if (CPU_FEATURES_CPU_P (cpu_features, SSE2)) GLRO(dl_hwcap) |= HWCAP_X86_SSE2; if (CPU_FEATURES_ARCH_P (cpu_features, I686)) GLRO(dl_platform) = "i686"; else if (CPU_FEATURES_ARCH_P (cpu_features, I586)) GLRO(dl_platform) = "i586"; #endif #if CET_ENABLED # if HAVE_TUNABLES TUNABLE_GET (x86_ibt, tunable_val_t *, TUNABLE_CALLBACK (set_x86_ibt)); TUNABLE_GET (x86_shstk, tunable_val_t *, TUNABLE_CALLBACK (set_x86_shstk)); # endif /* Check CET status. */ unsigned int cet_status = get_cet_status (); if (cet_status) { GL(dl_x86_feature_1)[0] = cet_status; # ifndef SHARED /* Check if IBT and SHSTK are enabled by kernel. */ if ((cet_status & GNU_PROPERTY_X86_FEATURE_1_IBT) || (cet_status & GNU_PROPERTY_X86_FEATURE_1_SHSTK)) { /* Disable IBT and/or SHSTK if they are enabled by kernel, but disabled by environment variable: GLIBC_TUNABLES=glibc.tune.hwcaps=-IBT,-SHSTK */ unsigned int cet_feature = 0; if (!HAS_CPU_FEATURE (IBT)) cet_feature |= GNU_PROPERTY_X86_FEATURE_1_IBT; if (!HAS_CPU_FEATURE (SHSTK)) cet_feature |= GNU_PROPERTY_X86_FEATURE_1_SHSTK; if (cet_feature) { int res = dl_cet_disable_cet (cet_feature); /* Clear the disabled bits in dl_x86_feature_1. */ if (res == 0) GL(dl_x86_feature_1)[0] &= ~cet_feature; } /* Lock CET if IBT or SHSTK is enabled in executable. Don't lock CET if SHSTK is enabled permissively. */ if (((GL(dl_x86_feature_1)[1] >> CET_MAX) & ((1 << CET_MAX) - 1)) != CET_PERMISSIVE) dl_cet_lock_cet (); } # endif } #endif }