/* Elided pthread mutex trylock. Copyright (C) 2014-2017 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #define aconf __elision_aconf /* Try to elide a futex trylock. FUTEX is the futex variable. ADAPT_COUNT is the adaptation counter in the mutex. */ int __lll_trylock_elision (int *futex, short *adapt_count) { /* Implement POSIX semantics by forbiding nesting elided trylocks. Sorry. After the abort the code is re-executed non transactional and if the lock was already locked return an error. */ if (__libc_tx_nesting_depth () > 0) { /* Note that this abort may terminate an outermost transaction that was created outside glibc. This persistently aborts the current transactions to force them to use the default lock instead of retrying transactions until their try_tbegin is zero. */ __libc_tabort (_HTM_FIRST_USER_ABORT_CODE | 1); __builtin_unreachable (); } /* adapt_count can be accessed concurrently; these accesses can be both inside of transactions (if critical sections are nested and the outer critical section uses lock elision) and outside of transactions. Thus, we need to use atomic accesses to avoid data races. However, the value of adapt_count is just a hint, so relaxed MO accesses are sufficient. Do not begin a transaction if another cpu has locked the futex with normal locking. If adapt_count is zero, it remains and the next pthread_mutex_lock call will try to start a transaction again. */ if (atomic_load_relaxed (futex) == 0 && atomic_load_relaxed (adapt_count) <= 0 && aconf.try_tbegin > 0) { int status = __libc_tbegin ((void *) 0); if (__builtin_expect (status == _HTM_TBEGIN_STARTED, _HTM_TBEGIN_STARTED)) { /* Check the futex to make sure nobody has touched it in the mean time. This forces the futex into the cache and makes sure the transaction aborts if some other cpu uses the lock (writes the futex). */ if (__builtin_expect (atomic_load_relaxed (futex) == 0, 1)) /* Lock was free. Return to user code in a transaction. */ return 0; /* Lock was busy. Fall back to normal locking. Since we are in a non-nested transaction there is no need to abort, which is expensive. Simply end the started transaction. */ __libc_tend (); /* Note: Changing the adapt_count here might abort a transaction on a different cpu, but that could happen anyway when the futex is acquired, so there's no need to check the nesting depth here. See above for why relaxed MO is sufficient. */ if (aconf.skip_lock_busy > 0) atomic_store_relaxed (adapt_count, aconf.skip_lock_busy); } else if (status != _HTM_TBEGIN_TRANSIENT) { /* A persistent abort (cc 1 or 3) indicates that a retry is probably futile. Use the normal locking now and for the next couple of calls. Be careful to avoid writing to the lock. */ if (aconf.skip_trylock_internal_abort > 0) *adapt_count = aconf.skip_trylock_internal_abort; } /* Could do some retries here. */ } /* Use normal locking as fallback path if transaction does not succeed. */ return lll_trylock (*futex); }