/* Copyright (C) 1992, 93, 95, 96, 97, 98 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper, , August 1995. ARM changes by Philip Blundell, , May 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _LINUX_ARM_SYSDEP_H #define _LINUX_ARM_SYSDEP_H 1 /* There is some commonality. */ #include /* For Linux we can use the system call table in the header file /usr/include/asm/unistd.h of the kernel. But these symbols do not follow the SYS_* syntax so we have to redefine the `SYS_ify' macro here. */ #undef SYS_ify #define SWI_BASE (0x900000) #define SYS_ify(syscall_name) (__NR_##syscall_name) #ifdef __ASSEMBLER__ /* Linux uses a negative return value to indicate syscall errors, unlike most Unices, which use the condition codes' carry flag. Since version 2.1 the return value of a system call might be negative even if the call succeeded. E.g., the `lseek' system call might return a large offset. Therefore we must not anymore test for < 0, but test for a real error by making sure the value in R0 is a real error number. Linus said he will make sure the no syscall returns a value in -1 .. -4095 as a valid result so we can savely test with -4095. */ #undef PSEUDO #define PSEUDO(name, syscall_name, args) \ .text; \ .type syscall_error,%function ; \ ENTRY (name) \ DO_CALL (args, syscall_name); \ cmn r0, $4096; \ bhs PLTJMP(C_SYMBOL_NAME(__syscall_error)); #undef PSEUDO_END #define PSEUDO_END(name) \ SYSCALL_ERROR_HANDLER \ END (name) #define SYSCALL_ERROR_HANDLER /* Nothing here; code in sysdep.S is used. */ /* Linux takes system call args in registers: syscall number in the SWI instruction arg 1 r0 arg 2 r1 arg 3 r2 arg 4 r3 arg 5 r4 (this is different from the APCS convention) The compiler is going to form a call by coming here, through PSEUDO, with arguments syscall number in the DO_CALL macro arg 1 r0 arg 2 r1 arg 3 r2 arg 4 r3 arg 5 [sp] We need to shuffle values between R4 and the stack so that the caller's R4 is not corrupted, and the kernel sees the right argument there. */ #undef DO_CALL #define DO_CALL(args, syscall_name) \ DOARGS_##args \ swi SYS_ify (syscall_name); \ UNDOARGS_##args #define DOARGS_0 /* nothing */ #define DOARGS_1 /* nothing */ #define DOARGS_2 /* nothing */ #define DOARGS_3 /* nothing */ #define DOARGS_4 /* nothing */ #define DOARGS_5 ldr ip, [sp]; str r4, [sp]; mov r4, ip; #define UNDOARGS_0 /* nothing */ #define UNDOARGS_1 /* nothing */ #define UNDOARGS_2 /* nothing */ #define UNDOARGS_3 /* nothing */ #define UNDOARGS_4 /* nothing */ #define UNDOARGS_5 ldr r4, [sp]; #endif /* __ASSEMBLER__ */ #endif /* linux/arm/sysdep.h */