/* Copyright (C) 1991-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#undef __ptr_t
#define __ptr_t void *
#if defined HAVE_STRING_H || defined _LIBC
# include
#endif
#undef memcmp
#ifndef MEMCMP
# define MEMCMP memcmp
#endif
#ifdef _LIBC
# include
# include
# if __BYTE_ORDER == __BIG_ENDIAN
# define WORDS_BIGENDIAN
# endif
#else /* Not in the GNU C library. */
# include
/* Type to use for aligned memory operations.
This should normally be the biggest type supported by a single load
and store. Must be an unsigned type. */
# define op_t unsigned long int
# define OPSIZ (sizeof(op_t))
/* Threshold value for when to enter the unrolled loops. */
# define OP_T_THRES 16
/* Type to use for unaligned operations. */
typedef unsigned char byte;
#endif /* In the GNU C library. */
/* Provide the appropriate builtins to shift two registers based on
the alignment of a pointer held in a third register, and to reverse
the bytes in a word. */
#ifdef __tilegx__
#define DBLALIGN __insn_dblalign
#define REVBYTES __insn_revbytes
#else
#define DBLALIGN __insn_dword_align
#define REVBYTES __insn_bytex
#endif
#ifdef WORDS_BIGENDIAN
# define CMP_LT_OR_GT(a, b) ((a) > (b) ? 1 : -1)
#else
# define CMP_LT_OR_GT(a, b) (REVBYTES(a) > REVBYTES(b) ? 1 : -1)
#endif
/* BE VERY CAREFUL IF YOU CHANGE THIS CODE! */
/* The strategy of this memcmp is:
1. Compare bytes until one of the block pointers is aligned.
2. Compare using memcmp_common_alignment or
memcmp_not_common_alignment, regarding the alignment of the other
block after the initial byte operations. The maximum number of
full words (of type op_t) are compared in this way.
3. Compare the few remaining bytes. */
static int memcmp_common_alignment (long, long, size_t) __THROW;
/* memcmp_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN `op_t'
objects (not LEN bytes!). Both SRCP1 and SRCP2 should be aligned for
memory operations on `op_t's. */
static int
memcmp_common_alignment (srcp1, srcp2, len)
long int srcp1;
long int srcp2;
size_t len;
{
op_t a0, a1;
op_t b0, b1;
switch (len % 4)
{
default: /* Avoid warning about uninitialized local variables. */
case 2:
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
len += 2;
goto do1;
case 3:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
len += 1;
goto do2;
case 0:
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
return 0;
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
goto do3;
case 1:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
len -= 1;
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
goto do0;
/* Fall through. */
}
do
{
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (a1 != b1))
return CMP_LT_OR_GT (a1, b1);
do3:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (a0 != b0))
return CMP_LT_OR_GT (a0, b0);
do2:
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (a1 != b1))
return CMP_LT_OR_GT (a1, b1);
do1:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (a0 != b0))
return CMP_LT_OR_GT (a0, b0);
len -= 4;
}
while (len != 0);
/* This is the right position for do0. Please don't move
it into the loop. */
do0:
if (__glibc_likely (a1 != b1))
return CMP_LT_OR_GT (a1, b1);
return 0;
}
static int memcmp_not_common_alignment (long, long, size_t) __THROW;
/* memcmp_not_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN
`op_t' objects (not LEN bytes!). SRCP2 should be aligned for memory
operations on `op_t', but SRCP1 *should be unaligned*. */
static int
memcmp_not_common_alignment (srcp1, srcp2, len)
long int srcp1;
long int srcp2;
size_t len;
{
void * srcp1i;
op_t a0, a1, a2, a3;
op_t b0, b1, b2, b3;
op_t x;
/* Calculate how to shift a word read at the memory operation
aligned srcp1 to make it aligned for comparison. */
srcp1i = (void *) srcp1;
/* Make SRCP1 aligned by rounding it down to the beginning of the `op_t'
it points in the middle of. */
srcp1 &= -OPSIZ;
switch (len % 4)
{
default: /* Avoid warning about uninitialized local variables. */
case 2:
a1 = ((op_t *) srcp1)[0];
a2 = ((op_t *) srcp1)[1];
b2 = ((op_t *) srcp2)[0];
srcp1 += 2 * OPSIZ;
srcp2 += 1 * OPSIZ;
len += 2;
goto do1;
case 3:
a0 = ((op_t *) srcp1)[0];
a1 = ((op_t *) srcp1)[1];
b1 = ((op_t *) srcp2)[0];
srcp1 += 2 * OPSIZ;
srcp2 += 1 * OPSIZ;
len += 1;
goto do2;
case 0:
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
return 0;
a3 = ((op_t *) srcp1)[0];
a0 = ((op_t *) srcp1)[1];
b0 = ((op_t *) srcp2)[0];
srcp1 += 2 * OPSIZ;
srcp2 += 1 * OPSIZ;
goto do3;
case 1:
a2 = ((op_t *) srcp1)[0];
a3 = ((op_t *) srcp1)[1];
b3 = ((op_t *) srcp2)[0];
srcp1 += 2 * OPSIZ;
srcp2 += 1 * OPSIZ;
len -= 1;
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
goto do0;
/* Fall through. */
}
do
{
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
x = DBLALIGN (a2, a3, srcp1i);
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (x != b3))
return CMP_LT_OR_GT (x, b3);
do3:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
x = DBLALIGN (a3, a0, srcp1i);
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (x != b0))
return CMP_LT_OR_GT (x, b0);
do2:
a2 = ((op_t *) srcp1)[0];
b2 = ((op_t *) srcp2)[0];
x = DBLALIGN (a0, a1, srcp1i);
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (x != b1))
return CMP_LT_OR_GT (x, b1);
do1:
a3 = ((op_t *) srcp1)[0];
b3 = ((op_t *) srcp2)[0];
x = DBLALIGN (a1, a2, srcp1i);
srcp1 += OPSIZ;
srcp2 += OPSIZ;
if (__glibc_likely (x != b2))
return CMP_LT_OR_GT (x, b2);
len -= 4;
}
while (len != 0);
/* This is the right position for do0. Please don't move
it into the loop. */
do0:
x = DBLALIGN (a2, a3, srcp1i);
if (__glibc_likely (x != b3))
return CMP_LT_OR_GT (x, b3);
return 0;
}
int
MEMCMP (s1, s2, len)
const __ptr_t s1;
const __ptr_t s2;
size_t len;
{
op_t a0;
op_t b0;
long int srcp1 = (long int) s1;
long int srcp2 = (long int) s2;
int res;
if (len >= OP_T_THRES)
{
/* There are at least some bytes to compare. No need to test
for LEN == 0 in this alignment loop. */
while (srcp2 % OPSIZ != 0)
{
a0 = ((byte *) srcp1)[0];
b0 = ((byte *) srcp2)[0];
srcp1 += 1;
srcp2 += 1;
res = a0 - b0;
if (__glibc_likely (res != 0))
return res;
len -= 1;
}
/* SRCP2 is now aligned for memory operations on `op_t'.
SRCP1 alignment determines if we can do a simple,
aligned compare or need to shuffle bits. */
if (srcp1 % OPSIZ == 0)
res = memcmp_common_alignment (srcp1, srcp2, len / OPSIZ);
else
res = memcmp_not_common_alignment (srcp1, srcp2, len / OPSIZ);
if (res != 0)
return res;
/* Number of bytes remaining in the interval [0..OPSIZ-1]. */
srcp1 += len & -OPSIZ;
srcp2 += len & -OPSIZ;
len %= OPSIZ;
}
/* There are just a few bytes to compare. Use byte memory operations. */
while (len != 0)
{
a0 = ((byte *) srcp1)[0];
b0 = ((byte *) srcp2)[0];
srcp1 += 1;
srcp2 += 1;
res = a0 - b0;
if (__glibc_likely (res != 0))
return res;
len -= 1;
}
return 0;
}
libc_hidden_builtin_def(memcmp)
#ifdef weak_alias
# undef bcmp
weak_alias (memcmp, bcmp)
#endif