/* Machine-dependent ELF dynamic relocation inline functions. Sparc64 version.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#ifndef dl_machine_h
#define dl_machine_h
#define ELF_MACHINE_NAME "sparc64"
#include
#include
#include
#include
#include
#define ELF64_R_TYPE_ID(info) ((info) & 0xff)
#define ELF64_R_TYPE_DATA(info) ((info) >> 8)
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int
elf_machine_matches_host (const Elf64_Ehdr *ehdr)
{
return ehdr->e_machine == EM_SPARCV9;
}
/* We have to do this because elf_machine_{dynamic,load_address} can be
invoked from functions that have no GOT references, and thus the compiler
has no obligation to load the PIC register. */
#define LOAD_PIC_REG(PIC_REG) \
do { Elf64_Addr tmp; \
__asm("sethi %%hi(_GLOBAL_OFFSET_TABLE_-4), %1\n\t" \
"rd %%pc, %0\n\t" \
"add %1, %%lo(_GLOBAL_OFFSET_TABLE_+4), %1\n\t" \
"add %0, %1, %0" \
: "=r" (PIC_REG), "=r" (tmp)); \
} while (0)
/* Return the link-time address of _DYNAMIC. Conveniently, this is the
first element of the GOT. This must be inlined in a function which
uses global data. */
static inline Elf64_Addr
elf_machine_dynamic (void)
{
register Elf64_Addr *elf_pic_register __asm__("%l7");
LOAD_PIC_REG (elf_pic_register);
return *elf_pic_register;
}
/* Return the run-time load address of the shared object. */
static inline Elf64_Addr
elf_machine_load_address (void)
{
register Elf32_Addr *pc __asm ("%o7");
register Elf64_Addr *got __asm ("%l7");
__asm ("sethi %%hi(_GLOBAL_OFFSET_TABLE_-4), %1\n\t"
"call 1f\n\t"
" add %1, %%lo(_GLOBAL_OFFSET_TABLE_+4), %1\n\t"
"call _DYNAMIC\n\t"
"call _GLOBAL_OFFSET_TABLE_\n"
"1:\tadd %1, %0, %1\n\t" : "=r" (pc), "=r" (got));
/* got is now l_addr + _GLOBAL_OFFSET_TABLE_
*got is _DYNAMIC
pc[2]*4 is l_addr + _DYNAMIC - (long)pc - 8
pc[3]*4 is l_addr + _GLOBAL_OFFSET_TABLE_ - (long)pc - 12 */
return (Elf64_Addr) got - *got + (Elf32_Sword) ((pc[2] - pc[3]) * 4) - 4;
}
static inline Elf64_Addr __attribute__ ((always_inline))
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
const Elf64_Rela *reloc,
Elf64_Addr *reloc_addr, Elf64_Addr value)
{
sparc64_fixup_plt (map, reloc, reloc_addr, value + reloc->r_addend,
reloc->r_addend, 1);
return value;
}
/* Return the final value of a plt relocation. */
static inline Elf64_Addr
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
Elf64_Addr value)
{
/* Don't add addend here, but in elf_machine_fixup_plt instead.
value + reloc->r_addend is the value which should actually be
stored into .plt data slot. */
return value;
}
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry, so
PLT entries should not be allowed to define the value.
ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
of the main executable's symbols, as for a COPY reloc. */
#define elf_machine_type_class(type) \
((((type) == R_SPARC_JMP_SLOT \
|| ((type) >= R_SPARC_TLS_GD_HI22 && (type) <= R_SPARC_TLS_TPOFF64)) \
* ELF_RTYPE_CLASS_PLT) \
| (((type) == R_SPARC_COPY) * ELF_RTYPE_CLASS_COPY))
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
#define ELF_MACHINE_JMP_SLOT R_SPARC_JMP_SLOT
/* The SPARC never uses Elf64_Rel relocations. */
#define ELF_MACHINE_NO_REL 1
#define ELF_MACHINE_NO_RELA 0
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
if (l->l_info[DT_JMPREL] && lazy)
{
extern void _dl_runtime_resolve_0 (void);
extern void _dl_runtime_resolve_1 (void);
extern void _dl_runtime_profile_0 (void);
extern void _dl_runtime_profile_1 (void);
Elf64_Addr res0_addr, res1_addr;
unsigned int *plt = (void *) D_PTR (l, l_info[DT_PLTGOT]);
if (__builtin_expect(profile, 0))
{
res0_addr = (Elf64_Addr) &_dl_runtime_profile_0;
res1_addr = (Elf64_Addr) &_dl_runtime_profile_1;
if (GLRO(dl_profile) != NULL
&& _dl_name_match_p (GLRO(dl_profile), l))
GL(dl_profile_map) = l;
}
else
{
res0_addr = (Elf64_Addr) &_dl_runtime_resolve_0;
res1_addr = (Elf64_Addr) &_dl_runtime_resolve_1;
}
/* PLT0 looks like:
sethi %uhi(_dl_runtime_{resolve,profile}_0), %g4
sethi %hi(_dl_runtime_{resolve,profile}_0), %g5
or %g4, %ulo(_dl_runtime_{resolve,profile}_0), %g4
or %g5, %lo(_dl_runtime_{resolve,profile}_0), %g5
sllx %g4, 32, %g4
add %g4, %g5, %g5
jmpl %g5, %g4
nop
*/
plt[0] = 0x09000000 | (res0_addr >> (64 - 22));
plt[1] = 0x0b000000 | ((res0_addr >> 10) & 0x003fffff);
plt[2] = 0x88112000 | ((res0_addr >> 32) & 0x3ff);
plt[3] = 0x8a116000 | (res0_addr & 0x3ff);
plt[4] = 0x89293020;
plt[5] = 0x8a010005;
plt[6] = 0x89c14000;
plt[7] = 0x01000000;
/* PLT1 looks like:
sethi %uhi(_dl_runtime_{resolve,profile}_1), %g4
sethi %hi(_dl_runtime_{resolve,profile}_1), %g5
or %g4, %ulo(_dl_runtime_{resolve,profile}_1), %g4
or %g5, %lo(_dl_runtime_{resolve,profile}_1), %g5
sllx %g4, 32, %g4
add %g4, %g5, %g5
jmpl %g5, %g4
nop
*/
plt[8] = 0x09000000 | (res1_addr >> (64 - 22));
plt[9] = 0x0b000000 | ((res1_addr >> 10) & 0x003fffff);
plt[10] = 0x88112000 | ((res1_addr >> 32) & 0x3ff);
plt[11] = 0x8a116000 | (res1_addr & 0x3ff);
plt[12] = 0x89293020;
plt[13] = 0x8a010005;
plt[14] = 0x89c14000;
plt[15] = 0x01000000;
/* Now put the magic cookie at the beginning of .PLT2
Entry .PLT3 is unused by this implementation. */
*((struct link_map **)(&plt[16])) = l;
if (__builtin_expect (l->l_info[VALIDX(DT_GNU_PRELINKED)] != NULL, 0)
|| __builtin_expect (l->l_info [VALIDX (DT_GNU_LIBLISTSZ)] != NULL, 0))
{
/* Need to reinitialize .plt to undo prelinking. */
Elf64_Rela *rela = (Elf64_Rela *) D_PTR (l, l_info[DT_JMPREL]);
Elf64_Rela *relaend
= (Elf64_Rela *) ((char *) rela
+ l->l_info[DT_PLTRELSZ]->d_un.d_val);
/* prelink must ensure there are no R_SPARC_NONE relocs left
in .rela.plt. */
while (rela < relaend)
{
if (__builtin_expect (rela->r_addend, 0) != 0)
{
Elf64_Addr slot = ((rela->r_offset + l->l_addr + 0x400
- (Elf64_Addr) plt)
/ 0x1400) * 0x1400
+ (Elf64_Addr) plt - 0x400;
/* ldx [%o7 + X], %g1 */
unsigned int first_ldx = *(unsigned int *)(slot + 12);
Elf64_Addr ptr = slot + (first_ldx & 0xfff) + 4;
*(Elf64_Addr *) (rela->r_offset + l->l_addr)
= (Elf64_Addr) plt
- (slot + ((rela->r_offset + l->l_addr - ptr) / 8) * 24
+ 4);
++rela;
continue;
}
*(unsigned int *) (rela->r_offset + l->l_addr)
= 0x03000000 | (rela->r_offset + l->l_addr - (Elf64_Addr) plt);
*(unsigned int *) (rela->r_offset + l->l_addr + 4)
= 0x30680000 | ((((Elf64_Addr) plt + 32 - rela->r_offset
- l->l_addr - 4) >> 2) & 0x7ffff);
__asm __volatile ("flush %0" : : "r" (rela->r_offset
+ l->l_addr));
__asm __volatile ("flush %0+4" : : "r" (rela->r_offset
+ l->l_addr));
++rela;
}
}
}
return lazy;
}
/* The PLT uses Elf64_Rela relocs. */
#define elf_machine_relplt elf_machine_rela
/* Undo the sub %sp, 6*8, %sp; add %sp, STACK_BIAS + 22*8, %o0 below
(but w/o STACK_BIAS) to get at the value we want in __libc_stack_end. */
#define DL_STACK_END(cookie) \
((void *) (((long) (cookie)) - (22 - 6) * 8))
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define RTLD_GOT_ADDRESS(pic_reg, reg, symbol) \
"sethi %gdop_hix22(" #symbol "), " #reg "\n\t" \
"xor " #reg ", %gdop_lox10(" #symbol "), " #reg "\n\t" \
"ldx [" #pic_reg " + " #reg "], " #reg ", %gdop(" #symbol ")\n"
#define __S1(x) #x
#define __S(x) __S1(x)
#define RTLD_START __asm__ ( "\n" \
" .text\n" \
" .global _start\n" \
" .type _start, @function\n" \
" .align 32\n" \
"_start:\n" \
" /* Make room for functions to drop their arguments on the stack. */\n" \
" sub %sp, 6*8, %sp\n" \
" /* Pass pointer to argument block to _dl_start. */\n" \
" call _dl_start\n" \
" add %sp," __S(STACK_BIAS) "+22*8,%o0\n" \
" /* FALLTHRU */\n" \
" .size _start, .-_start\n" \
"\n" \
" .global _dl_start_user\n" \
" .type _dl_start_user, @function\n" \
"_dl_start_user:\n" \
" /* Load the GOT register. */\n" \
"1: call 11f\n" \
" sethi %hi(_GLOBAL_OFFSET_TABLE_-(1b-.)), %l7\n" \
"11: or %l7, %lo(_GLOBAL_OFFSET_TABLE_-(1b-.)), %l7\n" \
" add %l7, %o7, %l7\n" \
" /* Save the user entry point address in %l0. */\n" \
" mov %o0, %l0\n" \
" /* See if we were run as a command with the executable file name as an\n" \
" extra leading argument. If so, we must shift things around since we\n" \
" must keep the stack doubleword aligned. */\n" \
RTLD_GOT_ADDRESS(%l7, %g5, _dl_skip_args) \
" ld [%g5], %i0\n" \
" brz,pt %i0, 2f\n" \
" ldx [%sp + " __S(STACK_BIAS) " + 22*8], %i5\n" \
" /* Find out how far to shift. */\n" \
" sub %i5, %i0, %i5\n" \
" sllx %i0, 3, %l6\n" \
RTLD_GOT_ADDRESS(%l7, %l4, _dl_argv) \
" stx %i5, [%sp + " __S(STACK_BIAS) " + 22*8]\n" \
" add %sp, " __S(STACK_BIAS) " + 23*8, %i1\n" \
" add %i1, %l6, %i2\n" \
" ldx [%l4], %l5\n" \
" /* Copy down argv. */\n" \
"12: ldx [%i2], %i3\n" \
" add %i2, 8, %i2\n" \
" stx %i3, [%i1]\n" \
" brnz,pt %i3, 12b\n" \
" add %i1, 8, %i1\n" \
" sub %l5, %l6, %l5\n" \
" /* Copy down envp. */\n" \
"13: ldx [%i2], %i3\n" \
" add %i2, 8, %i2\n" \
" stx %i3, [%i1]\n" \
" brnz,pt %i3, 13b\n" \
" add %i1, 8, %i1\n" \
" /* Copy down auxiliary table. */\n" \
"14: ldx [%i2], %i3\n" \
" ldx [%i2 + 8], %i4\n" \
" add %i2, 16, %i2\n" \
" stx %i3, [%i1]\n" \
" stx %i4, [%i1 + 8]\n" \
" brnz,pt %i3, 14b\n" \
" add %i1, 16, %i1\n" \
" stx %l5, [%l4]\n" \
" /* %o0 = _dl_loaded, %o1 = argc, %o2 = argv, %o3 = envp. */\n" \
"2:\t" RTLD_GOT_ADDRESS(%l7, %o0, _rtld_local) \
" sllx %i5, 3, %o3\n" \
" add %sp, " __S(STACK_BIAS) " + 23*8, %o2\n" \
" add %o3, 8, %o3\n" \
" mov %i5, %o1\n" \
" add %o2, %o3, %o3\n" \
" call _dl_init\n" \
" ldx [%o0], %o0\n" \
" /* Pass our finalizer function to the user in %g1. */\n" \
RTLD_GOT_ADDRESS(%l7, %g1, _dl_fini) \
" /* Jump to the user's entry point and deallocate the extra stack we got. */\n" \
" jmp %l0\n" \
" add %sp, 6*8, %sp\n" \
" .size _dl_start_user, . - _dl_start_user\n" \
" .previous\n");
#endif /* dl_machine_h */
#define ARCH_LA_PLTENTER sparc64_gnu_pltenter
#define ARCH_LA_PLTEXIT sparc64_gnu_pltexit
#ifdef RESOLVE_MAP
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
MAP is the object containing the reloc. */
auto inline void
__attribute__ ((always_inline))
elf_machine_rela (struct link_map *map, const Elf64_Rela *reloc,
const Elf64_Sym *sym, const struct r_found_version *version,
void *const reloc_addr_arg, int skip_ifunc)
{
Elf64_Addr *const reloc_addr = reloc_addr_arg;
#if !defined RTLD_BOOTSTRAP && !defined RESOLVE_CONFLICT_FIND_MAP
const Elf64_Sym *const refsym = sym;
#endif
Elf64_Addr value;
const unsigned long int r_type = ELF64_R_TYPE_ID (reloc->r_info);
#if !defined RESOLVE_CONFLICT_FIND_MAP
struct link_map *sym_map = NULL;
#endif
#if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
reference weak so static programs can still link. This declaration
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
because rtld.c contains the common defn for _dl_rtld_map, which is
incompatible with a weak decl in the same file. */
weak_extern (_dl_rtld_map);
#endif
if (__glibc_unlikely (r_type == R_SPARC_NONE))
return;
if (__glibc_unlikely (r_type == R_SPARC_SIZE64))
{
*reloc_addr = sym->st_size + reloc->r_addend;
return;
}
#if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC
if (__glibc_unlikely (r_type == R_SPARC_RELATIVE))
{
# if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC
if (map != &_dl_rtld_map) /* Already done in rtld itself. */
# endif
*reloc_addr += map->l_addr + reloc->r_addend;
return;
}
#endif
#ifndef RESOLVE_CONFLICT_FIND_MAP
if (__builtin_expect (ELF64_ST_BIND (sym->st_info) == STB_LOCAL, 0)
&& sym->st_shndx != SHN_UNDEF)
{
value = map->l_addr;
}
else
{
sym_map = RESOLVE_MAP (&sym, version, r_type);
value = sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value;
}
#else
value = 0;
#endif
value += reloc->r_addend; /* Assume copy relocs have zero addend. */
if (sym != NULL
&& __builtin_expect (ELFW(ST_TYPE) (sym->st_info) == STT_GNU_IFUNC, 0)
&& __builtin_expect (sym->st_shndx != SHN_UNDEF, 1)
&& __builtin_expect (!skip_ifunc, 1))
value = ((Elf64_Addr (*) (int)) value) (GLRO(dl_hwcap));
switch (r_type)
{
#if !defined RTLD_BOOTSTRAP && !defined RESOLVE_CONFLICT_FIND_MAP
case R_SPARC_COPY:
if (sym == NULL)
/* This can happen in trace mode if an object could not be
found. */
break;
if (sym->st_size > refsym->st_size
|| (GLRO(dl_verbose) && sym->st_size < refsym->st_size))
{
const char *strtab;
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
_dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
RTLD_PROGNAME, strtab + refsym->st_name);
}
memcpy (reloc_addr_arg, (void *) value,
MIN (sym->st_size, refsym->st_size));
break;
#endif
case R_SPARC_64:
case R_SPARC_GLOB_DAT:
*reloc_addr = value;
break;
case R_SPARC_IRELATIVE:
value = ((Elf64_Addr (*) (int)) value) (GLRO(dl_hwcap));
*reloc_addr = value;
break;
case R_SPARC_JMP_IREL:
value = ((Elf64_Addr (*) (int)) value) (GLRO(dl_hwcap));
/* 'high' is always zero, for large PLT entries the linker
emits an R_SPARC_IRELATIVE. */
#ifdef RESOLVE_CONFLICT_FIND_MAP
sparc64_fixup_plt (NULL, reloc, reloc_addr, value, 0, 0);
#else
sparc64_fixup_plt (map, reloc, reloc_addr, value, 0, 0);
#endif
break;
case R_SPARC_JMP_SLOT:
#ifdef RESOLVE_CONFLICT_FIND_MAP
/* R_SPARC_JMP_SLOT conflicts against .plt[32768+]
relocs should be turned into R_SPARC_64 relocs
in .gnu.conflict section.
r_addend non-zero does not mean it is a .plt[32768+]
reloc, instead it is the actual address of the function
to call. */
sparc64_fixup_plt (NULL, reloc, reloc_addr, value, 0, 0);
#else
sparc64_fixup_plt (map, reloc, reloc_addr, value, reloc->r_addend, 0);
#endif
break;
#ifndef RESOLVE_CONFLICT_FIND_MAP
case R_SPARC_TLS_DTPMOD64:
/* Get the information from the link map returned by the
resolv function. */
if (sym_map != NULL)
*reloc_addr = sym_map->l_tls_modid;
break;
case R_SPARC_TLS_DTPOFF64:
/* During relocation all TLS symbols are defined and used.
Therefore the offset is already correct. */
*reloc_addr = (sym == NULL ? 0 : sym->st_value) + reloc->r_addend;
break;
case R_SPARC_TLS_TPOFF64:
/* The offset is negative, forward from the thread pointer. */
/* We know the offset of object the symbol is contained in.
It is a negative value which will be added to the
thread pointer. */
if (sym != NULL)
{
CHECK_STATIC_TLS (map, sym_map);
*reloc_addr = sym->st_value - sym_map->l_tls_offset
+ reloc->r_addend;
}
break;
# ifndef RTLD_BOOTSTRAP
case R_SPARC_TLS_LE_HIX22:
case R_SPARC_TLS_LE_LOX10:
if (sym != NULL)
{
CHECK_STATIC_TLS (map, sym_map);
value = sym->st_value - sym_map->l_tls_offset
+ reloc->r_addend;
if (r_type == R_SPARC_TLS_LE_HIX22)
*(unsigned int *)reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000)
| (((~value) >> 10) & 0x3fffff));
else
*(unsigned int *)reloc_addr =
((*(unsigned int *)reloc_addr & 0xffffe000) | (value & 0x3ff)
| 0x1c00);
}
break;
# endif
#endif
#ifndef RTLD_BOOTSTRAP
case R_SPARC_8:
*(char *) reloc_addr = value;
break;
case R_SPARC_16:
*(short *) reloc_addr = value;
break;
case R_SPARC_32:
*(unsigned int *) reloc_addr = value;
break;
case R_SPARC_DISP8:
*(char *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_DISP16:
*(short *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_DISP32:
*(unsigned int *) reloc_addr = (value - (Elf64_Addr) reloc_addr);
break;
case R_SPARC_WDISP30:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xc0000000) |
(((value - (Elf64_Addr) reloc_addr) >> 2) & 0x3fffffff));
break;
/* MEDLOW code model relocs */
case R_SPARC_LO10:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
(value & 0x3ff));
break;
case R_SPARC_HI22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
((value >> 10) & 0x3fffff));
break;
case R_SPARC_OLO10:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x1fff) |
(((value & 0x3ff) + ELF64_R_TYPE_DATA (reloc->r_info)) & 0x1fff));
break;
/* ABS34 code model reloc */
case R_SPARC_H34:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
((value >> 12) & 0x3fffff));
/* MEDMID code model relocs */
case R_SPARC_H44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
((value >> 22) & 0x3fffff));
break;
case R_SPARC_M44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
((value >> 12) & 0x3ff));
break;
case R_SPARC_L44:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0xfff) |
(value & 0xfff));
break;
/* MEDANY code model relocs */
case R_SPARC_HH22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
(value >> 42));
break;
case R_SPARC_HM10:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & ~0x3ff) |
((value >> 32) & 0x3ff));
break;
case R_SPARC_LM22:
*(unsigned int *) reloc_addr =
((*(unsigned int *)reloc_addr & 0xffc00000) |
((value >> 10) & 0x003fffff));
break;
case R_SPARC_UA16:
((unsigned char *) reloc_addr_arg) [0] = value >> 8;
((unsigned char *) reloc_addr_arg) [1] = value;
break;
case R_SPARC_UA32:
((unsigned char *) reloc_addr_arg) [0] = value >> 24;
((unsigned char *) reloc_addr_arg) [1] = value >> 16;
((unsigned char *) reloc_addr_arg) [2] = value >> 8;
((unsigned char *) reloc_addr_arg) [3] = value;
break;
case R_SPARC_UA64:
if (! ((long) reloc_addr_arg & 3))
{
/* Common in .eh_frame */
((unsigned int *) reloc_addr_arg) [0] = value >> 32;
((unsigned int *) reloc_addr_arg) [1] = value;
break;
}
((unsigned char *) reloc_addr_arg) [0] = value >> 56;
((unsigned char *) reloc_addr_arg) [1] = value >> 48;
((unsigned char *) reloc_addr_arg) [2] = value >> 40;
((unsigned char *) reloc_addr_arg) [3] = value >> 32;
((unsigned char *) reloc_addr_arg) [4] = value >> 24;
((unsigned char *) reloc_addr_arg) [5] = value >> 16;
((unsigned char *) reloc_addr_arg) [6] = value >> 8;
((unsigned char *) reloc_addr_arg) [7] = value;
break;
#endif
#if !defined RTLD_BOOTSTRAP || defined _NDEBUG
default:
_dl_reloc_bad_type (map, r_type, 0);
break;
#endif
}
}
auto inline void
__attribute__ ((always_inline))
elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc,
void *const reloc_addr_arg)
{
Elf64_Addr *const reloc_addr = reloc_addr_arg;
*reloc_addr = l_addr + reloc->r_addend;
}
auto inline void
__attribute__ ((always_inline))
elf_machine_lazy_rel (struct link_map *map,
Elf64_Addr l_addr, const Elf64_Rela *reloc,
int skip_ifunc)
{
Elf64_Addr *const reloc_addr = (void *) (l_addr + reloc->r_offset);
const unsigned int r_type = ELF64_R_TYPE (reloc->r_info);
if (__glibc_likely (r_type == R_SPARC_JMP_SLOT))
;
else if (r_type == R_SPARC_JMP_IREL
|| r_type == R_SPARC_IRELATIVE)
{
Elf64_Addr value = map->l_addr + reloc->r_addend;
if (__glibc_likely (!skip_ifunc))
value = ((Elf64_Addr (*) (int)) value) (GLRO(dl_hwcap));
if (r_type == R_SPARC_JMP_IREL)
{
/* 'high' is always zero, for large PLT entries the linker
emits an R_SPARC_IRELATIVE. */
sparc64_fixup_plt (map, reloc, reloc_addr, value, 0, 1);
}
else
*reloc_addr = value;
}
else if (r_type == R_SPARC_NONE)
;
else
_dl_reloc_bad_type (map, r_type, 1);
}
#endif /* RESOLVE_MAP */