/* Optimized strlen implementation for PowerPC64/POWER8 using a vectorized loop. Copyright (C) 2016-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include /* int [r3] strlen (char *s [r3]) */ #ifndef STRLEN # define STRLEN strlen #endif .machine power8 ENTRY_TOCLESS (STRLEN, 4) CALL_MCOUNT 1 dcbt 0,r3 clrrdi r4,r3,3 /* Align the address to doubleword boundary. */ rlwinm r6,r3,3,26,28 /* Calculate padding. */ li r0,0 /* Doubleword with null chars to use with cmpb. */ li r5,-1 /* MASK = 0xffffffffffffffff. */ ld r12,0(r4) /* Load doubleword from memory. */ #ifdef __LITTLE_ENDIAN__ sld r5,r5,r6 #else srd r5,r5,r6 /* MASK = MASK >> padding. */ #endif orc r9,r12,r5 /* Mask bits that are not part of the string. */ cmpb r10,r9,r0 /* Check for null bytes in DWORD1. */ cmpdi cr7,r10,0 /* If r10 == 0, no null's have been found. */ bne cr7,L(done) /* For shorter strings (< 64 bytes), we will not use vector registers, as the overhead isn't worth it. So, let's use GPRs instead. This will be done the same way as we do in the POWER7 implementation. Let's see if we are aligned to a quadword boundary. If so, we can jump to the first (non-vectorized) loop. Otherwise, we have to handle the next DWORD first. */ mtcrf 0x01,r4 mr r9,r4 addi r9,r9,8 bt 28,L(align64) /* Handle the next 8 bytes so we are aligned to a quadword boundary. */ ldu r5,8(r4) cmpb r10,r5,r0 cmpdi cr7,r10,0 addi r9,r9,8 bne cr7,L(done) L(align64): /* Proceed to the old (POWER7) implementation, checking two doublewords per iteration. For the first 56 bytes, we will just check for null characters. After that, we will also check if we are 64-byte aligned so we can jump to the vectorized implementation. We will unroll these loops to avoid excessive branching. */ ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 bne cr7,L(dword_zero) ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 bne cr7,L(dword_zero) ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 bne cr7,L(dword_zero) /* Are we 64-byte aligned? If so, jump to the vectorized loop. Note: aligning to 64-byte will necessarily slow down performance for strings around 64 bytes in length due to the extra comparisons required to check alignment for the vectorized loop. This is a necessary tradeoff we are willing to take in order to speed up the calculation for larger strings. */ andi. r10,r9,63 beq cr0,L(preloop) ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 bne cr7,L(dword_zero) andi. r10,r9,63 beq cr0,L(preloop) ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 bne cr7,L(dword_zero) andi. r10,r9,63 beq cr0,L(preloop) ld r6,8(r4) ldu r5,16(r4) cmpb r10,r6,r0 cmpb r11,r5,r0 or r5,r10,r11 cmpdi cr7,r5,0 addi r9,r9,16 /* At this point, we are necessarily 64-byte aligned. If no zeroes were found, jump to the vectorized loop. */ beq cr7,L(preloop) L(dword_zero): /* OK, one (or both) of the doublewords contains a null byte. Check the first doubleword and decrement the address in case the first doubleword really contains a null byte. */ cmpdi cr6,r10,0 addi r4,r4,-8 bne cr6,L(done) /* The null byte must be in the second doubleword. Adjust the address again and move the result of cmpb to r10 so we can calculate the length. */ mr r10,r11 addi r4,r4,8 /* If the null byte was found in the non-vectorized code, compute the final length. r10 has the output of the cmpb instruction, that is, it contains 0xff in the same position as the null byte in the original doubleword from the string. Use that to calculate the length. */ L(done): #ifdef __LITTLE_ENDIAN__ addi r9, r10,-1 /* Form a mask from trailing zeros. */ andc r9, r9,r10 popcntd r0, r9 /* Count the bits in the mask. */ #else cntlzd r0,r10 /* Count leading zeros before the match. */ #endif subf r5,r3,r4 srdi r0,r0,3 /* Convert leading/trailing zeros to bytes. */ add r3,r5,r0 /* Compute final length. */ blr /* Vectorized implementation starts here. */ .p2align 4 L(preloop): /* Set up for the loop. */ mr r4,r9 li r7, 16 /* Load required offsets. */ li r8, 32 li r9, 48 li r12, 8 vxor v0,v0,v0 /* VR with null chars to use with vcmpequb. */ /* Main loop to look for the end of the string. We will read in 64-byte chunks. Align it to 32 bytes and unroll it 3 times to leverage the icache performance. */ .p2align 5 L(loop): lvx v1,r4,r0 /* Load 4 quadwords. */ lvx v2,r4,r7 lvx v3,r4,r8 lvx v4,r4,r9 vminub v5,v1,v2 /* Compare and merge into one VR for speed. */ vminub v6,v3,v4 vminub v7,v5,v6 vcmpequb. v7,v7,v0 /* Check for NULLs. */ addi r4,r4,64 /* Adjust address for the next iteration. */ bne cr6,L(vmx_zero) lvx v1,r4,r0 /* Load 4 quadwords. */ lvx v2,r4,r7 lvx v3,r4,r8 lvx v4,r4,r9 vminub v5,v1,v2 /* Compare and merge into one VR for speed. */ vminub v6,v3,v4 vminub v7,v5,v6 vcmpequb. v7,v7,v0 /* Check for NULLs. */ addi r4,r4,64 /* Adjust address for the next iteration. */ bne cr6,L(vmx_zero) lvx v1,r4,r0 /* Load 4 quadwords. */ lvx v2,r4,r7 lvx v3,r4,r8 lvx v4,r4,r9 vminub v5,v1,v2 /* Compare and merge into one VR for speed. */ vminub v6,v3,v4 vminub v7,v5,v6 vcmpequb. v7,v7,v0 /* Check for NULLs. */ addi r4,r4,64 /* Adjust address for the next iteration. */ beq cr6,L(loop) L(vmx_zero): /* OK, we found a null byte. Let's look for it in the current 64-byte block and mark it in its corresponding VR. */ vcmpequb v1,v1,v0 vcmpequb v2,v2,v0 vcmpequb v3,v3,v0 vcmpequb v4,v4,v0 /* We will now 'compress' the result into a single doubleword, so it can be moved to a GPR for the final calculation. First, we generate an appropriate mask for vbpermq, so we can permute bits into the first halfword. */ vspltisb v10,3 lvsl v11,r0,r0 vslb v10,v11,v10 /* Permute the first bit of each byte into bits 48-63. */ vbpermq v1,v1,v10 vbpermq v2,v2,v10 vbpermq v3,v3,v10 vbpermq v4,v4,v10 /* Shift each component into its correct position for merging. */ #ifdef __LITTLE_ENDIAN__ vsldoi v2,v2,v2,2 vsldoi v3,v3,v3,4 vsldoi v4,v4,v4,6 #else vsldoi v1,v1,v1,6 vsldoi v2,v2,v2,4 vsldoi v3,v3,v3,2 #endif /* Merge the results and move to a GPR. */ vor v1,v2,v1 vor v2,v3,v4 vor v4,v1,v2 mfvrd r10,v4 /* Adjust address to the begninning of the current 64-byte block. */ addi r4,r4,-64 #ifdef __LITTLE_ENDIAN__ addi r9, r10,-1 /* Form a mask from trailing zeros. */ andc r9, r9,r10 popcntd r0, r9 /* Count the bits in the mask. */ #else cntlzd r0,r10 /* Count leading zeros before the match. */ #endif subf r5,r3,r4 add r3,r5,r0 /* Compute final length. */ blr END (STRLEN) libc_hidden_builtin_def (strlen)