/* Optimized 64-bit memset implementation for POWER6. Copyright (C) 1997, 1999, 2000, 2002, 2003, 2007 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include /* __ptr_t [r3] memset (__ptr_t s [r3], int c [r4], size_t n [r5])); Returns 's'. The memset is done in three sizes: byte (8 bits), word (32 bits), cache line (256 bits). There is a special case for setting cache lines to 0, to take advantage of the dcbz instruction. */ .machine power6 EALIGN (BP_SYM (memset), 7, 0) CALL_MCOUNT 3 #define rTMP r0 #define rRTN r3 /* Initial value of 1st argument. */ #if __BOUNDED_POINTERS__ # define rMEMP0 r4 /* Original value of 1st arg. */ # define rCHR r5 /* Char to set in each byte. */ # define rLEN r6 /* Length of region to set. */ # define rMEMP r10 /* Address at which we are storing. */ #else # define rMEMP0 r3 /* Original value of 1st arg. */ # define rCHR r4 /* Char to set in each byte. */ # define rLEN r5 /* Length of region to set. */ # define rMEMP r6 /* Address at which we are storing. */ #endif #define rALIGN r7 /* Number of bytes we are setting now (when aligning). */ #define rMEMP2 r8 #define rMEMP3 r9 /* Alt mem pointer. */ L(_memset): #if __BOUNDED_POINTERS__ cmpldi cr1, rRTN, 0 CHECK_BOUNDS_BOTH_WIDE (rMEMP0, rTMP, rTMP2, rLEN) beq cr1, L(b0) STORE_RETURN_VALUE (rMEMP0) STORE_RETURN_BOUNDS (rTMP, rTMP2) L(b0): #endif /* Take care of case for size <= 4. */ cmpldi cr1, rLEN, 8 andi. rALIGN, rMEMP0, 7 mr rMEMP, rMEMP0 ble cr1, L(small) /* Align to doubleword boundary. */ cmpldi cr5, rLEN, 31 rlwimi rCHR, rCHR, 8, 16, 23 /* Replicate byte to halfword. */ beq+ L(aligned2) mtcrf 0x01, rMEMP0 subfic rALIGN, rALIGN, 8 cror 28,30,31 /* Detect odd word aligned. */ add rMEMP, rMEMP, rALIGN sub rLEN, rLEN, rALIGN rlwimi rCHR, rCHR, 16, 0, 15 /* Replicate halfword to word. */ bt 29, L(g4) /* Process the even word of doubleword. */ bf+ 31, L(g2) stb rCHR, 0(rMEMP0) bt 30, L(g4x) L(g2): sth rCHR, -6(rMEMP) L(g4x): stw rCHR, -4(rMEMP) b L(aligned) /* Process the odd word of doubleword. */ L(g4): bf 28, L(g4x) /* If false, word aligned on odd word. */ bf+ 31, L(g0) stb rCHR, 0(rMEMP0) bt 30, L(aligned) L(g0): sth rCHR, -2(rMEMP) /* Handle the case of size < 31. */ L(aligned2): rlwimi rCHR, rCHR, 16, 0, 15 /* Replicate halfword to word. */ L(aligned): mtcrf 0x01, rLEN ble cr5, L(medium) /* Align to 32-byte boundary. */ andi. rALIGN, rMEMP, 0x18 subfic rALIGN, rALIGN, 0x20 insrdi rCHR,rCHR,32,0 /* Replicate word to double word. */ beq L(caligned) mtcrf 0x01, rALIGN add rMEMP, rMEMP, rALIGN sub rLEN, rLEN, rALIGN cmplwi cr1, rALIGN, 0x10 mr rMEMP2, rMEMP bf 28, L(a1) stdu rCHR, -8(rMEMP2) L(a1): blt cr1, L(a2) std rCHR, -8(rMEMP2) stdu rCHR, -16(rMEMP2) L(a2): /* Now aligned to a 32 byte boundary. */ .align 4 L(caligned): cmpldi cr1, rCHR, 0 clrrdi. rALIGN, rLEN, 5 mtcrf 0x01, rLEN beq cr1, L(zloopstart) /* Special case for clearing memory using dcbz. */ beq L(medium) /* We may not actually get to do a full line. */ .align 4 /* Storing a non-zero "c" value. We are aligned at a sector (32-byte) boundary may not be at cache line (128-byte) boundary. */ L(nzloopstart): /* memset in 32-byte chunks until we get to a cache line boundary. If rLEN is less then the distance to the next cache-line boundary use cacheAligned1 code to finish the tail. */ cmpldi cr1,rLEN,128 andi. rTMP,rMEMP,127 blt cr1,L(cacheAligned1) addi rMEMP3,rMEMP,32 beq L(nzCacheAligned) addi rLEN,rLEN,-32 std rCHR,0(rMEMP) std rCHR,8(rMEMP) std rCHR,16(rMEMP) addi rMEMP,rMEMP,32 andi. rTMP,rMEMP3,127 std rCHR,-8(rMEMP3) beq L(nzCacheAligned) addi rLEN,rLEN,-32 std rCHR,0(rMEMP3) addi rMEMP,rMEMP,32 std rCHR,8(rMEMP3) andi. rTMP,rMEMP,127 std rCHR,16(rMEMP3) std rCHR,24(rMEMP3) beq L(nzCacheAligned) addi rLEN,rLEN,-32 std rCHR,32(rMEMP3) addi rMEMP,rMEMP,32 cmpldi cr1,rLEN,128 std rCHR,40(rMEMP3) cmpldi cr6,rLEN,256 li rMEMP2,128 std rCHR,48(rMEMP3) std rCHR,56(rMEMP3) blt cr1,L(cacheAligned1) b L(nzCacheAligned128) /* Now we are aligned to the cache line and can use dcbtst. */ .align 4 L(nzCacheAligned): cmpldi cr1,rLEN,128 blt cr1,L(cacheAligned1) b L(nzCacheAligned128) .align 5 L(nzCacheAligned128): cmpldi cr1,rLEN,256 addi rMEMP3,rMEMP,64 std rCHR,0(rMEMP) std rCHR,8(rMEMP) std rCHR,16(rMEMP) std rCHR,24(rMEMP) std rCHR,32(rMEMP) std rCHR,40(rMEMP) std rCHR,48(rMEMP) std rCHR,56(rMEMP) addi rMEMP,rMEMP3,64 addi rLEN,rLEN,-128 std rCHR,0(rMEMP3) std rCHR,8(rMEMP3) std rCHR,16(rMEMP3) std rCHR,24(rMEMP3) std rCHR,32(rMEMP3) std rCHR,40(rMEMP3) std rCHR,48(rMEMP3) std rCHR,56(rMEMP3) bge cr1,L(nzCacheAligned128) dcbtst 0,rMEMP b L(cacheAligned1) .align 5 /* Storing a zero "c" value. We are aligned at a sector (32-byte) boundary but may not be at cache line (128-byte) boundary. If the remaining length spans a full cache line we can use the Data cache block zero instruction. */ L(zloopstart): /* memset in 32-byte chunks until we get to a cache line boundary. If rLEN is less then the distance to the next cache-line boundary use cacheAligned1 code to finish the tail. */ cmpldi cr1,rLEN,128 beq L(medium) L(getCacheAligned): andi. rTMP,rMEMP,127 nop blt cr1,L(cacheAligned1) addi rMEMP3,rMEMP,32 beq L(cacheAligned) addi rLEN,rLEN,-32 std rCHR,0(rMEMP) std rCHR,8(rMEMP) std rCHR,16(rMEMP) addi rMEMP,rMEMP,32 andi. rTMP,rMEMP3,127 std rCHR,-8(rMEMP3) L(getCacheAligned2): beq L(cacheAligned) addi rLEN,rLEN,-32 std rCHR,0(rMEMP3) std rCHR,8(rMEMP3) addi rMEMP,rMEMP,32 andi. rTMP,rMEMP,127 std rCHR,16(rMEMP3) std rCHR,24(rMEMP3) L(getCacheAligned3): beq L(cacheAligned) addi rLEN,rLEN,-32 std rCHR,32(rMEMP3) addi rMEMP,rMEMP,32 cmpldi cr1,rLEN,128 std rCHR,40(rMEMP3) cmpldi cr6,rLEN,256 li rMEMP2,128 std rCHR,48(rMEMP3) std rCHR,56(rMEMP3) blt cr1,L(cacheAligned1) blt cr6,L(cacheAligned128) b L(cacheAlignedx) /* Now we are aligned to the cache line and can use dcbz. */ .align 5 L(cacheAligned): cmpldi cr1,rLEN,128 cmpldi cr6,rLEN,256 blt cr1,L(cacheAligned1) li rMEMP2,128 L(cacheAlignedx): cmpldi cr5,rLEN,640 blt cr6,L(cacheAligned128) bgt cr5,L(cacheAligned512) cmpldi cr6,rLEN,512 dcbz 0,rMEMP cmpldi cr1,rLEN,384 dcbz rMEMP2,rMEMP addi rMEMP,rMEMP,256 addi rLEN,rLEN,-256 blt cr1,L(cacheAligned1) blt cr6,L(cacheAligned128) b L(cacheAligned256) .align 5 /* A simple loop for the longer (>640 bytes) lengths. This form limits the branch miss-predicted to exactly 1 at loop exit.*/ L(cacheAligned512): cmpli cr1,rLEN,128 blt cr1,L(cacheAligned1) dcbz 0,rMEMP addi rLEN,rLEN,-128 addi rMEMP,rMEMP,128 b L(cacheAligned512) .align 5 L(cacheAligned256): cmpldi cr6,rLEN,512 dcbz 0,rMEMP cmpldi cr1,rLEN,384 dcbz rMEMP2,rMEMP addi rMEMP,rMEMP,256 addi rLEN,rLEN,-256 bge cr6,L(cacheAligned256) blt cr1,L(cacheAligned1) .align 4 L(cacheAligned128): dcbz 0,rMEMP addi rMEMP,rMEMP,128 addi rLEN,rLEN,-128 nop L(cacheAligned1): cmpldi cr1,rLEN,32 blt cr1,L(handletail32) addi rMEMP3,rMEMP,32 addi rLEN,rLEN,-32 std rCHR,0(rMEMP) std rCHR,8(rMEMP) std rCHR,16(rMEMP) addi rMEMP,rMEMP,32 cmpldi cr1,rLEN,32 std rCHR,-8(rMEMP3) L(cacheAligned2): blt cr1,L(handletail32) addi rLEN,rLEN,-32 std rCHR,0(rMEMP3) std rCHR,8(rMEMP3) addi rMEMP,rMEMP,32 cmpldi cr1,rLEN,32 std rCHR,16(rMEMP3) std rCHR,24(rMEMP3) nop L(cacheAligned3): blt cr1,L(handletail32) addi rMEMP,rMEMP,32 addi rLEN,rLEN,-32 std rCHR,32(rMEMP3) std rCHR,40(rMEMP3) std rCHR,48(rMEMP3) std rCHR,56(rMEMP3) /* We are here because the length or remainder (rLEN) is less than the cache line/sector size and does not justify aggressive loop unrolling. So set up the preconditions for L(medium) and go there. */ .align 3 L(handletail32): cmpldi cr1,rLEN,0 beqlr cr1 b L(medium) .align 5 L(small): /* Memset of 8 bytes or less. */ cmpldi cr6, rLEN, 4 cmpldi cr5, rLEN, 1 ble cr6,L(le4) subi rLEN, rLEN, 4 stb rCHR,0(rMEMP) stb rCHR,1(rMEMP) stb rCHR,2(rMEMP) stb rCHR,3(rMEMP) addi rMEMP,rMEMP, 4 cmpldi cr5, rLEN, 1 L(le4): cmpldi cr1, rLEN, 3 bltlr cr5 stb rCHR, 0(rMEMP) beqlr cr5 stb rCHR, 1(rMEMP) bltlr cr1 stb rCHR, 2(rMEMP) beqlr cr1 stb rCHR, 3(rMEMP) blr /* Memset of 0-31 bytes. */ .align 5 L(medium): insrdi rCHR,rCHR,32,0 /* Replicate word to double word. */ cmpldi cr1, rLEN, 16 L(medium_tail2): add rMEMP, rMEMP, rLEN L(medium_tail): bt- 31, L(medium_31t) bt- 30, L(medium_30t) L(medium_30f): bt 29, L(medium_29t) L(medium_29f): bge cr1, L(medium_27t) bflr 28 std rCHR, -8(rMEMP) blr L(medium_31t): stbu rCHR, -1(rMEMP) bf- 30, L(medium_30f) L(medium_30t): sthu rCHR, -2(rMEMP) bf- 29, L(medium_29f) L(medium_29t): stwu rCHR, -4(rMEMP) blt cr1, L(medium_27f) L(medium_27t): std rCHR, -8(rMEMP) stdu rCHR, -16(rMEMP) L(medium_27f): bflr 28 L(medium_28t): std rCHR, -8(rMEMP) blr END_GEN_TB (BP_SYM (memset),TB_TOCLESS) libc_hidden_builtin_def (memset) /* Copied from bzero.S to prevent the linker from inserting a stub between bzero and memset. */ ENTRY (BP_SYM (__bzero)) CALL_MCOUNT 3 #if __BOUNDED_POINTERS__ mr r6,r4 li r5,0 mr r4,r3 /* Tell memset that we don't want a return value. */ li r3,0 b L(_memset) #else mr r5,r4 li r4,0 b L(_memset) #endif END_GEN_TB (BP_SYM (__bzero),TB_TOCLESS) weak_alias (BP_SYM (__bzero), BP_SYM (bzero))