/* Optimized strcmp implementation for PowerPC64.
Copyright (C) 2003-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
/* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */
.machine power4
EALIGN (BP_SYM(memcmp), 4, 0)
CALL_MCOUNT 3
#define rTMP r0
#define rRTN r3
#define rSTR1 r3 /* first string arg */
#define rSTR2 r4 /* second string arg */
#define rN r5 /* max string length */
/* Note: The Bounded pointer support in this code is broken. This code
was inherited from PPC32 and that support was never completed.
Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */
#define rWORD1 r6 /* current word in s1 */
#define rWORD2 r7 /* current word in s2 */
#define rWORD3 r8 /* next word in s1 */
#define rWORD4 r9 /* next word in s2 */
#define rWORD5 r10 /* next word in s1 */
#define rWORD6 r11 /* next word in s2 */
#define rBITDIF r12 /* bits that differ in s1 & s2 words */
#define rWORD7 r30 /* next word in s1 */
#define rWORD8 r31 /* next word in s2 */
xor rTMP, rSTR2, rSTR1
cmpldi cr6, rN, 0
cmpldi cr1, rN, 12
clrldi. rTMP, rTMP, 61
clrldi rBITDIF, rSTR1, 61
cmpldi cr5, rBITDIF, 0
beq- cr6, L(zeroLength)
dcbt 0,rSTR1
dcbt 0,rSTR2
/* If less than 8 bytes or not aligned, use the unaligned
byte loop. */
blt cr1, L(bytealigned)
std rWORD8,-8(r1)
cfi_offset(rWORD8,-8)
std rWORD7,-16(r1)
cfi_offset(rWORD7,-16)
bne L(unaligned)
/* At this point we know both strings have the same alignment and the
compare length is at least 8 bytes. rBITDIF contains the low order
3 bits of rSTR1 and cr5 contains the result of the logical compare
of rBITDIF to 0. If rBITDIF == 0 then we are already double word
aligned and can perform the DWaligned loop.
Otherwise we know the two strings have the same alignment (but not
yet DW). So we can force the string addresses to the next lower DW
boundary and special case this first DW word using shift left to
eliminate bits preceding the first byte. Since we want to join the
normal (DWaligned) compare loop, starting at the second double word,
we need to adjust the length (rN) and special case the loop
versioning for the first DW. This insures that the loop count is
correct and the first DW (shifted) is in the expected resister pair. */
.align 4
L(samealignment):
clrrdi rSTR1, rSTR1, 3
clrrdi rSTR2, rSTR2, 3
beq cr5, L(DWaligned)
add rN, rN, rBITDIF
sldi r11, rBITDIF, 3
srdi rTMP, rN, 5 /* Divide by 32 */
andi. rBITDIF, rN, 24 /* Get the DW remainder */
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
cmpldi cr1, rBITDIF, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
beq L(dPs4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(dPs3)
beq cr1, L(dPs2)
/* Remainder is 8 */
.align 3
L(dsP1):
sld rWORD5, rWORD1, r11
sld rWORD6, rWORD2, r11
cmpld cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
/* Do something useful in this cycle since we have to branch anyway. */
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
cmpld cr0, rWORD1, rWORD2
b L(dP1e)
/* Remainder is 16 */
.align 4
L(dPs2):
sld rWORD5, rWORD1, r11
sld rWORD6, rWORD2, r11
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
/* Do something useful in this cycle since we have to branch anyway. */
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
cmpld cr5, rWORD7, rWORD8
b L(dP2e)
/* Remainder is 24 */
.align 4
L(dPs3):
sld rWORD3, rWORD1, r11
sld rWORD4, rWORD2, r11
cmpld cr1, rWORD3, rWORD4
b L(dP3e)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(dPs4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
sld rWORD1, rWORD1, r11
sld rWORD2, rWORD2, r11
cmpld cr0, rWORD1, rWORD2
b L(dP4e)
/* At this point we know both strings are double word aligned and the
compare length is at least 8 bytes. */
.align 4
L(DWaligned):
andi. rBITDIF, rN, 24 /* Get the DW remainder */
srdi rTMP, rN, 5 /* Divide by 32 */
cmpldi cr1, rBITDIF, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
beq L(dP4)
bgt cr1, L(dP3)
beq cr1, L(dP2)
/* Remainder is 8 */
.align 4
L(dP1):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early
(8-15 byte compare), we want to use only volatile registers. This
means we can avoid restoring non-volatile registers since we did not
change any on the early exit path. The key here is the non-early
exit path only cares about the condition code (cr5), not about which
register pair was used. */
ld rWORD5, 0(rSTR1)
ld rWORD6, 0(rSTR2)
cmpld cr5, rWORD5, rWORD6
blt cr7, L(dP1x)
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
cmpld cr0, rWORD1, rWORD2
L(dP1e):
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
cmpld cr1, rWORD3, rWORD4
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
bne cr0, L(dLcr0)
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
bne cr1, L(dLcr1)
cmpld cr5, rWORD7, rWORD8
bdnz L(dLoop)
bne cr6, L(dLcr6)
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
.align 3
L(dP1x):
sldi. r12, rN, 3
bne cr5, L(dLcr5)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne L(d00)
li rRTN, 0
blr
/* Remainder is 16 */
.align 4
L(dP2):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
ld rWORD5, 0(rSTR1)
ld rWORD6, 0(rSTR2)
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP2x)
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
cmpld cr5, rWORD7, rWORD8
L(dP2e):
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
cmpld cr0, rWORD1, rWORD2
ld rWORD3, 24(rSTR1)
ld rWORD4, 24(rSTR2)
cmpld cr1, rWORD3, rWORD4
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr6, L(dLcr6)
bne cr5, L(dLcr5)
b L(dLoop2)
/* Again we are on a early exit path (16-23 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP2x):
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
cmpld cr5, rWORD3, rWORD4
sldi. r12, rN, 3
bne cr6, L(dLcr6)
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr5, L(dLcr5)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne L(d00)
li rRTN, 0
blr
/* Remainder is 24 */
.align 4
L(dP3):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
ld rWORD3, 0(rSTR1)
ld rWORD4, 0(rSTR2)
cmpld cr1, rWORD3, rWORD4
L(dP3e):
ld rWORD5, 8(rSTR1)
ld rWORD6, 8(rSTR2)
cmpld cr6, rWORD5, rWORD6
blt cr7, L(dP3x)
ld rWORD7, 16(rSTR1)
ld rWORD8, 16(rSTR2)
cmpld cr5, rWORD7, rWORD8
ld rWORD1, 24(rSTR1)
ld rWORD2, 24(rSTR2)
cmpld cr0, rWORD1, rWORD2
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
bne cr1, L(dLcr1)
bne cr6, L(dLcr6)
b L(dLoop1)
/* Again we are on a early exit path (24-31 byte compare), we want to
only use volatile registers and avoid restoring non-volatile
registers. */
.align 4
L(dP3x):
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
cmpld cr5, rWORD1, rWORD2
sldi. r12, rN, 3
bne cr1, L(dLcr1)
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
bne cr6, L(dLcr6)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
bne cr5, L(dLcr5)
bne L(d00)
li rRTN, 0
blr
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(dP4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
cmpld cr0, rWORD1, rWORD2
L(dP4e):
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
cmpld cr1, rWORD3, rWORD4
ld rWORD5, 16(rSTR1)
ld rWORD6, 16(rSTR2)
cmpld cr6, rWORD5, rWORD6
ldu rWORD7, 24(rSTR1)
ldu rWORD8, 24(rSTR2)
cmpld cr5, rWORD7, rWORD8
bne cr0, L(dLcr0)
bne cr1, L(dLcr1)
bdz- L(d24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(dLoop):
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
cmpld cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
L(dLoop1):
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
L(dLoop2):
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
cmpld cr5, rWORD7, rWORD8
bne cr0, L(dLcr0)
L(dLoop3):
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
bne- cr1, L(dLcr1)
cmpld cr0, rWORD1, rWORD2
bdnz+ L(dLoop)
L(dL4):
cmpld cr1, rWORD3, rWORD4
bne cr6, L(dLcr6)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(dLcr5)
cmpld cr5, rWORD7, rWORD8
L(d44):
bne cr0, L(dLcr0)
L(d34):
bne cr1, L(dLcr1)
L(d24):
bne cr6, L(dLcr6)
L(d14):
sldi. r12, rN, 3
bne cr5, L(dLcr5)
L(d04):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
subfic rN, r12, 64 /* Shift count is 64 - (rN * 8). */
beq L(zeroLength)
/* At this point we have a remainder of 1 to 7 bytes to compare. Since
we are aligned it is safe to load the whole double word, and use
shift right double to eliminate bits beyond the compare length. */
L(d00):
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
srd rWORD1, rWORD1, rN
srd rWORD2, rWORD2, rN
cmpld cr5, rWORD1, rWORD2
bne cr5, L(dLcr5x)
li rRTN, 0
blr
.align 4
L(dLcr0):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgtlr cr0
li rRTN, -1
blr
.align 4
L(dLcr1):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgtlr cr1
li rRTN, -1
blr
.align 4
L(dLcr6):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgtlr cr6
li rRTN, -1
blr
.align 4
L(dLcr5):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
L(dLcr5x):
li rRTN, 1
bgtlr cr5
li rRTN, -1
blr
.align 4
L(bytealigned):
mtctr rN /* Power4 wants mtctr 1st in dispatch group */
beq- cr6, L(zeroLength)
/* We need to prime this loop. This loop is swing modulo scheduled
to avoid pipe delays. The dependent instruction latencies (load to
compare to conditional branch) is 2 to 3 cycles. In this loop each
dispatch group ends in a branch and takes 1 cycle. Effectively
the first iteration of the loop only serves to load operands and
branches based on compares are delayed until the next loop.
So we must precondition some registers and condition codes so that
we don't exit the loop early on the first iteration. */
lbz rWORD1, 0(rSTR1)
lbz rWORD2, 0(rSTR2)
bdz- L(b11)
cmpld cr0, rWORD1, rWORD2
lbz rWORD3, 1(rSTR1)
lbz rWORD4, 1(rSTR2)
bdz- L(b12)
cmpld cr1, rWORD3, rWORD4
lbzu rWORD5, 2(rSTR1)
lbzu rWORD6, 2(rSTR2)
bdz- L(b13)
.align 4
L(bLoop):
lbzu rWORD1, 1(rSTR1)
lbzu rWORD2, 1(rSTR2)
bne- cr0, L(bLcr0)
cmpld cr6, rWORD5, rWORD6
bdz- L(b3i)
lbzu rWORD3, 1(rSTR1)
lbzu rWORD4, 1(rSTR2)
bne- cr1, L(bLcr1)
cmpld cr0, rWORD1, rWORD2
bdz- L(b2i)
lbzu rWORD5, 1(rSTR1)
lbzu rWORD6, 1(rSTR2)
bne- cr6, L(bLcr6)
cmpld cr1, rWORD3, rWORD4
bdnz+ L(bLoop)
/* We speculatively loading bytes before we have tested the previous
bytes. But we must avoid overrunning the length (in the ctr) to
prevent these speculative loads from causing a segfault. In this
case the loop will exit early (before the all pending bytes are
tested. In this case we must complete the pending operations
before returning. */
L(b1i):
bne- cr0, L(bLcr0)
bne- cr1, L(bLcr1)
b L(bx56)
.align 4
L(b2i):
bne- cr6, L(bLcr6)
bne- cr0, L(bLcr0)
b L(bx34)
.align 4
L(b3i):
bne- cr1, L(bLcr1)
bne- cr6, L(bLcr6)
b L(bx12)
.align 4
L(bLcr0):
li rRTN, 1
bgtlr cr0
li rRTN, -1
blr
L(bLcr1):
li rRTN, 1
bgtlr cr1
li rRTN, -1
blr
L(bLcr6):
li rRTN, 1
bgtlr cr6
li rRTN, -1
blr
L(b13):
bne- cr0, L(bx12)
bne- cr1, L(bx34)
L(bx56):
sub rRTN, rWORD5, rWORD6
blr
nop
L(b12):
bne- cr0, L(bx12)
L(bx34):
sub rRTN, rWORD3, rWORD4
blr
L(b11):
L(bx12):
sub rRTN, rWORD1, rWORD2
blr
.align 4
L(zeroLengthReturn):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
L(zeroLength):
li rRTN, 0
blr
.align 4
/* At this point we know the strings have different alignment and the
compare length is at least 8 bytes. rBITDIF contains the low order
3 bits of rSTR1 and cr5 contains the result of the logical compare
of rBITDIF to 0. If rBITDIF == 0 then rStr1 is double word
aligned and can perform the DWunaligned loop.
Otherwise we know that rSTR1 is not already DW aligned yet.
So we can force the string addresses to the next lower DW
boundary and special case this first DW word using shift left to
eliminate bits preceding the first byte. Since we want to join the
normal (DWaligned) compare loop, starting at the second double word,
we need to adjust the length (rN) and special case the loop
versioning for the first DW. This insures that the loop count is
correct and the first DW (shifted) is in the expected resister pair. */
#define rSHL r29 /* Unaligned shift left count. */
#define rSHR r28 /* Unaligned shift right count. */
#define rB r27 /* Left rotation temp for rWORD2. */
#define rD r26 /* Left rotation temp for rWORD4. */
#define rF r25 /* Left rotation temp for rWORD6. */
#define rH r24 /* Left rotation temp for rWORD8. */
#define rA r0 /* Right rotation temp for rWORD2. */
#define rC r12 /* Right rotation temp for rWORD4. */
#define rE r0 /* Right rotation temp for rWORD6. */
#define rG r12 /* Right rotation temp for rWORD8. */
L(unaligned):
std r29,-24(r1)
cfi_offset(r29,-24)
clrldi rSHL, rSTR2, 61
beq- cr6, L(duzeroLength)
std r28,-32(r1)
cfi_offset(r28,-32)
beq cr5, L(DWunaligned)
std r27,-40(r1)
cfi_offset(r27,-40)
/* Adjust the logical start of rSTR2 ro compensate for the extra bits
in the 1st rSTR1 DW. */
sub r27, rSTR2, rBITDIF
/* But do not attempt to address the DW before that DW that contains
the actual start of rSTR2. */
clrrdi rSTR2, rSTR2, 3
std r26,-48(r1)
cfi_offset(r26,-48)
/* Compute the left/right shift counts for the unalign rSTR2,
compensating for the logical (DW aligned) start of rSTR1. */
clrldi rSHL, r27, 61
clrrdi rSTR1, rSTR1, 3
std r25,-56(r1)
cfi_offset(r25,-56)
sldi rSHL, rSHL, 3
cmpld cr5, r27, rSTR2
add rN, rN, rBITDIF
sldi r11, rBITDIF, 3
std r24,-64(r1)
cfi_offset(r24,-64)
subfic rSHR, rSHL, 64
srdi rTMP, rN, 5 /* Divide by 32 */
andi. rBITDIF, rN, 24 /* Get the DW remainder */
/* We normally need to load 2 DWs to start the unaligned rSTR2, but in
this special case those bits may be discarded anyway. Also we
must avoid loading a DW where none of the bits are part of rSTR2 as
this may cross a page boundary and cause a page fault. */
li rWORD8, 0
blt cr5, L(dus0)
ld rWORD8, 0(rSTR2)
la rSTR2, 8(rSTR2)
sld rWORD8, rWORD8, rSHL
L(dus0):
ld rWORD1, 0(rSTR1)
ld rWORD2, 0(rSTR2)
cmpldi cr1, rBITDIF, 16
cmpldi cr7, rN, 32
srd rG, rWORD2, rSHR
clrldi rN, rN, 61
beq L(duPs4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, rG, rWORD8
bgt cr1, L(duPs3)
beq cr1, L(duPs2)
/* Remainder is 8 */
.align 4
L(dusP1):
sld rB, rWORD2, rSHL
sld rWORD7, rWORD1, r11
sld rWORD8, rWORD8, r11
bge cr7, L(duP1e)
/* At this point we exit early with the first double word compare
complete and remainder of 0 to 7 bytes. See L(du14) for details on
how we handle the remaining bytes. */
cmpld cr5, rWORD7, rWORD8
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srd rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 16 */
.align 4
L(duPs2):
sld rH, rWORD2, rSHL
sld rWORD5, rWORD1, r11
sld rWORD6, rWORD8, r11
b L(duP2e)
/* Remainder is 24 */
.align 4
L(duPs3):
sld rF, rWORD2, rSHL
sld rWORD3, rWORD1, r11
sld rWORD4, rWORD8, r11
b L(duP3e)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(duPs4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
or rWORD8, rG, rWORD8
sld rD, rWORD2, rSHL
sld rWORD1, rWORD1, r11
sld rWORD2, rWORD8, r11
b L(duP4e)
/* At this point we know rSTR1 is double word aligned and the
compare length is at least 8 bytes. */
.align 4
L(DWunaligned):
std r27,-40(r1)
cfi_offset(r27,-40)
clrrdi rSTR2, rSTR2, 3
std r26,-48(r1)
cfi_offset(r26,-48)
srdi rTMP, rN, 5 /* Divide by 32 */
std r25,-56(r1)
cfi_offset(r25,-56)
andi. rBITDIF, rN, 24 /* Get the DW remainder */
std r24,-64(r1)
cfi_offset(r24,-64)
sldi rSHL, rSHL, 3
ld rWORD6, 0(rSTR2)
ldu rWORD8, 8(rSTR2)
cmpldi cr1, rBITDIF, 16
cmpldi cr7, rN, 32
clrldi rN, rN, 61
subfic rSHR, rSHL, 64
sld rH, rWORD6, rSHL
beq L(duP4)
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
bgt cr1, L(duP3)
beq cr1, L(duP2)
/* Remainder is 8 */
.align 4
L(duP1):
srd rG, rWORD8, rSHR
ld rWORD7, 0(rSTR1)
sld rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP1x)
L(duP1e):
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
cmpld cr5, rWORD7, rWORD8
srd rA, rWORD2, rSHR
sld rD, rWORD2, rSHL
or rWORD2, rA, rB
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
cmpld cr0, rWORD1, rWORD2
srd rC, rWORD4, rSHR
sld rF, rWORD4, rSHL
bne cr5, L(duLcr5)
or rWORD4, rC, rD
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
cmpld cr1, rWORD3, rWORD4
srd rE, rWORD6, rSHR
sld rH, rWORD6, rSHL
bne cr0, L(duLcr0)
or rWORD6, rE, rF
cmpld cr6, rWORD5, rWORD6
b L(duLoop3)
.align 4
/* At this point we exit early with the first double word compare
complete and remainder of 0 to 7 bytes. See L(du14) for details on
how we handle the remaining bytes. */
L(duP1x):
cmpld cr5, rWORD7, rWORD8
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srd rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 16 */
.align 4
L(duP2):
srd rE, rWORD8, rSHR
ld rWORD5, 0(rSTR1)
or rWORD6, rE, rH
sld rH, rWORD8, rSHL
L(duP2e):
ld rWORD7, 8(rSTR1)
ld rWORD8, 8(rSTR2)
cmpld cr6, rWORD5, rWORD6
srd rG, rWORD8, rSHR
sld rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP2x)
ld rWORD1, 16(rSTR1)
ld rWORD2, 16(rSTR2)
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srd rA, rWORD2, rSHR
sld rD, rWORD2, rSHL
or rWORD2, rA, rB
ld rWORD3, 24(rSTR1)
ld rWORD4, 24(rSTR2)
cmpld cr0, rWORD1, rWORD2
bne cr5, L(duLcr5)
srd rC, rWORD4, rSHR
sld rF, rWORD4, rSHL
or rWORD4, rC, rD
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
cmpld cr1, rWORD3, rWORD4
b L(duLoop2)
.align 4
L(duP2x):
cmpld cr5, rWORD7, rWORD8
addi rSTR1, rSTR1, 8
addi rSTR2, rSTR2, 8
bne cr6, L(duLcr6)
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srd rA, rWORD2, rSHR
b L(dutrim)
/* Remainder is 24 */
.align 4
L(duP3):
srd rC, rWORD8, rSHR
ld rWORD3, 0(rSTR1)
sld rF, rWORD8, rSHL
or rWORD4, rC, rH
L(duP3e):
ld rWORD5, 8(rSTR1)
ld rWORD6, 8(rSTR2)
cmpld cr1, rWORD3, rWORD4
srd rE, rWORD6, rSHR
sld rH, rWORD6, rSHL
or rWORD6, rE, rF
ld rWORD7, 16(rSTR1)
ld rWORD8, 16(rSTR2)
cmpld cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srd rG, rWORD8, rSHR
sld rB, rWORD8, rSHL
or rWORD8, rG, rH
blt cr7, L(duP3x)
ld rWORD1, 24(rSTR1)
ld rWORD2, 24(rSTR2)
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
srd rA, rWORD2, rSHR
sld rD, rWORD2, rSHL
or rWORD2, rA, rB
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
cmpld cr0, rWORD1, rWORD2
b L(duLoop1)
.align 4
L(duP3x):
addi rSTR1, rSTR1, 16
addi rSTR2, rSTR2, 16
bne cr1, L(duLcr1)
cmpld cr5, rWORD7, rWORD8
bne cr6, L(duLcr6)
sldi. rN, rN, 3
bne cr5, L(duLcr5)
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srd rA, rWORD2, rSHR
b L(dutrim)
/* Count is a multiple of 32, remainder is 0 */
.align 4
L(duP4):
mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */
srd rA, rWORD8, rSHR
ld rWORD1, 0(rSTR1)
sld rD, rWORD8, rSHL
or rWORD2, rA, rH
L(duP4e):
ld rWORD3, 8(rSTR1)
ld rWORD4, 8(rSTR2)
cmpld cr0, rWORD1, rWORD2
srd rC, rWORD4, rSHR
sld rF, rWORD4, rSHL
or rWORD4, rC, rD
ld rWORD5, 16(rSTR1)
ld rWORD6, 16(rSTR2)
cmpld cr1, rWORD3, rWORD4
bne cr0, L(duLcr0)
srd rE, rWORD6, rSHR
sld rH, rWORD6, rSHL
or rWORD6, rE, rF
ldu rWORD7, 24(rSTR1)
ldu rWORD8, 24(rSTR2)
cmpld cr6, rWORD5, rWORD6
bne cr1, L(duLcr1)
srd rG, rWORD8, rSHR
sld rB, rWORD8, rSHL
or rWORD8, rG, rH
cmpld cr5, rWORD7, rWORD8
bdz- L(du24) /* Adjust CTR as we start with +4 */
/* This is the primary loop */
.align 4
L(duLoop):
ld rWORD1, 8(rSTR1)
ld rWORD2, 8(rSTR2)
cmpld cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
srd rA, rWORD2, rSHR
sld rD, rWORD2, rSHL
or rWORD2, rA, rB
L(duLoop1):
ld rWORD3, 16(rSTR1)
ld rWORD4, 16(rSTR2)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
srd rC, rWORD4, rSHR
sld rF, rWORD4, rSHL
or rWORD4, rC, rD
L(duLoop2):
ld rWORD5, 24(rSTR1)
ld rWORD6, 24(rSTR2)
cmpld cr5, rWORD7, rWORD8
bne cr0, L(duLcr0)
srd rE, rWORD6, rSHR
sld rH, rWORD6, rSHL
or rWORD6, rE, rF
L(duLoop3):
ldu rWORD7, 32(rSTR1)
ldu rWORD8, 32(rSTR2)
cmpld cr0, rWORD1, rWORD2
bne- cr1, L(duLcr1)
srd rG, rWORD8, rSHR
sld rB, rWORD8, rSHL
or rWORD8, rG, rH
bdnz+ L(duLoop)
L(duL4):
bne cr1, L(duLcr1)
cmpld cr1, rWORD3, rWORD4
bne cr6, L(duLcr6)
cmpld cr6, rWORD5, rWORD6
bne cr5, L(duLcr5)
cmpld cr5, rWORD7, rWORD8
L(du44):
bne cr0, L(duLcr0)
L(du34):
bne cr1, L(duLcr1)
L(du24):
bne cr6, L(duLcr6)
L(du14):
sldi. rN, rN, 3
bne cr5, L(duLcr5)
/* At this point we have a remainder of 1 to 7 bytes to compare. We use
shift right double to eliminate bits beyond the compare length.
This allows the use of double word subtract to compute the final
result.
However it may not be safe to load rWORD2 which may be beyond the
string length. So we compare the bit length of the remainder to
the right shift count (rSHR). If the bit count is less than or equal
we do not need to load rWORD2 (all significant bits are already in
rB). */
cmpld cr7, rN, rSHR
beq L(duZeroReturn)
li rA, 0
ble cr7, L(dutrim)
ld rWORD2, 8(rSTR2)
srd rA, rWORD2, rSHR
.align 4
L(dutrim):
ld rWORD1, 8(rSTR1)
ld rWORD8,-8(r1)
subfic rN, rN, 64 /* Shift count is 64 - (rN * 8). */
or rWORD2, rA, rB
ld rWORD7,-16(r1)
ld r29,-24(r1)
srd rWORD1, rWORD1, rN
srd rWORD2, rWORD2, rN
ld r28,-32(r1)
ld r27,-40(r1)
li rRTN, 0
cmpld cr0, rWORD1, rWORD2
ld r26,-48(r1)
ld r25,-56(r1)
beq cr0, L(dureturn24)
li rRTN, 1
ld r24,-64(r1)
bgtlr cr0
li rRTN, -1
blr
.align 4
L(duLcr0):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgt cr0, L(dureturn29)
ld r29,-24(r1)
ld r28,-32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr1):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgt cr1, L(dureturn29)
ld r29,-24(r1)
ld r28,-32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr6):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgt cr6, L(dureturn29)
ld r29,-24(r1)
ld r28,-32(r1)
li rRTN, -1
b L(dureturn27)
.align 4
L(duLcr5):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
li rRTN, 1
bgt cr5, L(dureturn29)
ld r29,-24(r1)
ld r28,-32(r1)
li rRTN, -1
b L(dureturn27)
.align 3
L(duZeroReturn):
li rRTN,0
.align 4
L(dureturn):
ld rWORD8,-8(r1)
ld rWORD7,-16(r1)
L(dureturn29):
ld r29,-24(r1)
ld r28,-32(r1)
L(dureturn27):
ld r27,-40(r1)
L(dureturn26):
ld r26,-48(r1)
L(dureturn25):
ld r25,-56(r1)
L(dureturn24):
ld r24,-64(r1)
blr
L(duzeroLength):
li rRTN,0
blr
END (BP_SYM (memcmp))
libc_hidden_builtin_def (memcmp)
weak_alias (memcmp, bcmp)