/* The Inner Net License, Version 2.00 The author(s) grant permission for redistribution and use in source and binary forms, with or without modification, of the software and documentation provided that the following conditions are met: 0. If you receive a version of the software that is specifically labelled as not being for redistribution (check the version message and/or README), you are not permitted to redistribute that version of the software in any way or form. 1. All terms of the all other applicable copyrights and licenses must be followed. 2. Redistributions of source code must retain the authors' copyright notice(s), this list of conditions, and the following disclaimer. 3. Redistributions in binary form must reproduce the authors' copyright notice(s), this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 4. [The copyright holder has authorized the removal of this clause.] 5. Neither the name(s) of the author(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY ITS AUTHORS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. If these license terms cause you a real problem, contact the author. */ /* This software is Copyright 1996 by Craig Metz, All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBIDN extern int __idna_to_ascii_lz (const char *input, char **output, int flags); extern int __idna_to_unicode_lzlz (const char *input, char **output, int flags); # include #endif #define GAIH_OKIFUNSPEC 0x0100 #define GAIH_EAI ~(GAIH_OKIFUNSPEC) #ifndef UNIX_PATH_MAX # define UNIX_PATH_MAX 108 #endif struct gaih_service { const char *name; int num; }; struct gaih_servtuple { struct gaih_servtuple *next; int socktype; int protocol; int port; }; static const struct gaih_servtuple nullserv; struct gaih_typeproto { int socktype; int protocol; uint8_t protoflag; bool defaultflag; char name[8]; }; /* Values for `protoflag'. */ #define GAI_PROTO_NOSERVICE 1 #define GAI_PROTO_PROTOANY 2 static const struct gaih_typeproto gaih_inet_typeproto[] = { { 0, 0, 0, false, "" }, { SOCK_STREAM, IPPROTO_TCP, 0, true, "tcp" }, { SOCK_DGRAM, IPPROTO_UDP, 0, true, "udp" }, #if defined SOCK_DCCP && defined IPPROTO_DCCP { SOCK_DCCP, IPPROTO_DCCP, 0, false, "dccp" }, #endif #ifdef IPPROTO_UDPLITE { SOCK_DGRAM, IPPROTO_UDPLITE, 0, false, "udplite" }, #endif #ifdef IPPROTO_SCTP { SOCK_STREAM, IPPROTO_SCTP, 0, false, "sctp" }, { SOCK_SEQPACKET, IPPROTO_SCTP, 0, false, "sctp" }, #endif { SOCK_RAW, 0, GAI_PROTO_PROTOANY|GAI_PROTO_NOSERVICE, true, "raw" }, { 0, 0, 0, false, "" } }; struct gaih { int family; int (*gaih)(const char *name, const struct gaih_service *service, const struct addrinfo *req, struct addrinfo **pai, unsigned int *naddrs); }; static const struct addrinfo default_hints = { .ai_flags = AI_DEFAULT, .ai_family = PF_UNSPEC, .ai_socktype = 0, .ai_protocol = 0, .ai_addrlen = 0, .ai_addr = NULL, .ai_canonname = NULL, .ai_next = NULL }; static int gaih_inet_serv (const char *servicename, const struct gaih_typeproto *tp, const struct addrinfo *req, struct gaih_servtuple *st) { struct servent *s; size_t tmpbuflen = 1024; struct servent ts; char *tmpbuf; int r; do { tmpbuf = __alloca (tmpbuflen); r = __getservbyname_r (servicename, tp->name, &ts, tmpbuf, tmpbuflen, &s); if (r != 0 || s == NULL) { if (r == ERANGE) tmpbuflen *= 2; else return GAIH_OKIFUNSPEC | -EAI_SERVICE; } } while (r); st->next = NULL; st->socktype = tp->socktype; st->protocol = ((tp->protoflag & GAI_PROTO_PROTOANY) ? req->ai_protocol : tp->protocol); st->port = s->s_port; return 0; } #define gethosts(_family, _type) \ { \ int i; \ int herrno; \ struct hostent th; \ struct hostent *h; \ char *localcanon = NULL; \ no_data = 0; \ while (1) { \ rc = 0; \ status = DL_CALL_FCT (fct, (name, _family, &th, tmpbuf, tmpbuflen, \ &rc, &herrno, NULL, &localcanon)); \ if (rc != ERANGE || herrno != NETDB_INTERNAL) \ break; \ tmpbuf = extend_alloca (tmpbuf, tmpbuflen, 2 * tmpbuflen); \ } \ if (status == NSS_STATUS_SUCCESS && rc == 0) \ h = &th; \ else \ h = NULL; \ if (rc != 0) \ { \ if (herrno == NETDB_INTERNAL) \ { \ __set_h_errno (herrno); \ _res.options |= old_res_options & RES_USE_INET6; \ return -EAI_SYSTEM; \ } \ if (herrno == TRY_AGAIN) \ no_data = EAI_AGAIN; \ else \ no_data = herrno == NO_DATA; \ } \ else if (h != NULL) \ { \ for (i = 0; h->h_addr_list[i]; i++) \ { \ if (*pat == NULL) \ { \ *pat = __alloca (sizeof (struct gaih_addrtuple)); \ (*pat)->scopeid = 0; \ } \ uint32_t *addr = (*pat)->addr; \ (*pat)->next = NULL; \ (*pat)->name = i == 0 ? strdupa (h->h_name) : NULL; \ if (_family == AF_INET && req->ai_family == AF_INET6) \ { \ (*pat)->family = AF_INET6; \ addr[3] = *(uint32_t *) h->h_addr_list[i]; \ addr[2] = htonl (0xffff); \ addr[1] = 0; \ addr[0] = 0; \ } \ else \ { \ (*pat)->family = _family; \ memcpy (addr, h->h_addr_list[i], sizeof(_type)); \ } \ pat = &((*pat)->next); \ } \ \ if (localcanon != NULL && canon == NULL) \ canon = strdupa (localcanon); \ \ if (_family == AF_INET6 && i > 0) \ got_ipv6 = true; \ } \ } typedef enum nss_status (*nss_gethostbyname4_r) (const char *name, struct gaih_addrtuple **pat, char *buffer, size_t buflen, int *errnop, int *h_errnop, int32_t *ttlp); typedef enum nss_status (*nss_gethostbyname3_r) (const char *name, int af, struct hostent *host, char *buffer, size_t buflen, int *errnop, int *h_errnop, int32_t *ttlp, char **canonp); typedef enum nss_status (*nss_getcanonname_r) (const char *name, char *buffer, size_t buflen, char **result, int *errnop, int *h_errnop); extern service_user *__nss_hosts_database attribute_hidden; static int gaih_inet (const char *name, const struct gaih_service *service, const struct addrinfo *req, struct addrinfo **pai, unsigned int *naddrs) { const struct gaih_typeproto *tp = gaih_inet_typeproto; struct gaih_servtuple *st = (struct gaih_servtuple *) &nullserv; struct gaih_addrtuple *at = NULL; int rc; bool got_ipv6 = false; const char *canon = NULL; const char *orig_name = name; size_t alloca_used = 0; if (req->ai_protocol || req->ai_socktype) { ++tp; while (tp->name[0] && ((req->ai_socktype != 0 && req->ai_socktype != tp->socktype) || (req->ai_protocol != 0 && !(tp->protoflag & GAI_PROTO_PROTOANY) && req->ai_protocol != tp->protocol))) ++tp; if (! tp->name[0]) { if (req->ai_socktype) return GAIH_OKIFUNSPEC | -EAI_SOCKTYPE; else return GAIH_OKIFUNSPEC | -EAI_SERVICE; } } int port = 0; if (service != NULL) { if ((tp->protoflag & GAI_PROTO_NOSERVICE) != 0) return GAIH_OKIFUNSPEC | -EAI_SERVICE; if (service->num < 0) { if (tp->name[0]) { st = (struct gaih_servtuple *) alloca_account (sizeof (struct gaih_servtuple), alloca_used); if ((rc = gaih_inet_serv (service->name, tp, req, st))) return rc; } else { struct gaih_servtuple **pst = &st; for (tp++; tp->name[0]; tp++) { struct gaih_servtuple *newp; if ((tp->protoflag & GAI_PROTO_NOSERVICE) != 0) continue; if (req->ai_socktype != 0 && req->ai_socktype != tp->socktype) continue; if (req->ai_protocol != 0 && !(tp->protoflag & GAI_PROTO_PROTOANY) && req->ai_protocol != tp->protocol) continue; newp = (struct gaih_servtuple *) alloca_account (sizeof (struct gaih_servtuple), alloca_used); if ((rc = gaih_inet_serv (service->name, tp, req, newp))) { if (rc & GAIH_OKIFUNSPEC) continue; return rc; } *pst = newp; pst = &(newp->next); } if (st == (struct gaih_servtuple *) &nullserv) return GAIH_OKIFUNSPEC | -EAI_SERVICE; } } else { port = htons (service->num); goto got_port; } } else { got_port: if (req->ai_socktype || req->ai_protocol) { st = alloca_account (sizeof (struct gaih_servtuple), alloca_used); st->next = NULL; st->socktype = tp->socktype; st->protocol = ((tp->protoflag & GAI_PROTO_PROTOANY) ? req->ai_protocol : tp->protocol); st->port = port; } else { /* Neither socket type nor protocol is set. Return all socket types we know about. */ struct gaih_servtuple **lastp = &st; for (++tp; tp->name[0]; ++tp) if (tp->defaultflag) { struct gaih_servtuple *newp; newp = alloca_account (sizeof (struct gaih_servtuple), alloca_used); newp->next = NULL; newp->socktype = tp->socktype; newp->protocol = tp->protocol; newp->port = port; *lastp = newp; lastp = &newp->next; } } } bool malloc_name = false; bool malloc_addrmem = false; struct gaih_addrtuple *addrmem = NULL; bool malloc_canonbuf = false; char *canonbuf = NULL; bool malloc_tmpbuf = false; char *tmpbuf = NULL; int result = 0; if (name != NULL) { at = alloca_account (sizeof (struct gaih_addrtuple), alloca_used); at->family = AF_UNSPEC; at->scopeid = 0; at->next = NULL; #ifdef HAVE_LIBIDN if (req->ai_flags & AI_IDN) { int idn_flags = 0; if (req->ai_flags & AI_IDN_ALLOW_UNASSIGNED) idn_flags |= IDNA_ALLOW_UNASSIGNED; if (req->ai_flags & AI_IDN_USE_STD3_ASCII_RULES) idn_flags |= IDNA_USE_STD3_ASCII_RULES; char *p = NULL; rc = __idna_to_ascii_lz (name, &p, idn_flags); if (rc != IDNA_SUCCESS) { /* No need to jump to free_and_return here. */ if (rc == IDNA_MALLOC_ERROR) return -EAI_MEMORY; if (rc == IDNA_DLOPEN_ERROR) return -EAI_SYSTEM; return -EAI_IDN_ENCODE; } /* In case the output string is the same as the input string no new string has been allocated. */ if (p != name) malloc_name = true; } #endif if (__inet_aton (name, (struct in_addr *) at->addr) != 0) { if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET) at->family = AF_INET; else if (req->ai_family == AF_INET6 && (req->ai_flags & AI_V4MAPPED)) { at->addr[3] = at->addr[0]; at->addr[2] = htonl (0xffff); at->addr[1] = 0; at->addr[0] = 0; at->family = AF_INET6; } else { result = -EAI_ADDRFAMILY; goto free_and_return; } if (req->ai_flags & AI_CANONNAME) canon = name; } else if (at->family == AF_UNSPEC) { char *scope_delim = strchr (name, SCOPE_DELIMITER); int e; { bool malloc_namebuf = false; char *namebuf = (char *) name; if (__builtin_expect (scope_delim != NULL, 0)) { if (malloc_name) *scope_delim = '\0'; else { if (__libc_use_alloca (alloca_used + scope_delim - name + 1)) { namebuf = alloca_account (scope_delim - name + 1, alloca_used); *((char *) __mempcpy (namebuf, name, scope_delim - name)) = '\0'; } else { namebuf = strndup (name, scope_delim - name); if (namebuf == NULL) { assert (!malloc_name); return -EAI_MEMORY; } malloc_namebuf = true; } } } e = inet_pton (AF_INET6, namebuf, at->addr); if (malloc_namebuf) free (namebuf); else if (scope_delim != NULL && malloc_name) /* Undo what we did above. */ *scope_delim = SCOPE_DELIMITER; } if (e > 0) { if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET6) at->family = AF_INET6; else if (req->ai_family == AF_INET && IN6_IS_ADDR_V4MAPPED (at->addr)) { at->addr[0] = at->addr[3]; at->family = AF_INET; } else { result = -EAI_ADDRFAMILY; goto free_and_return; } if (scope_delim != NULL) { int try_numericscope = 0; if (IN6_IS_ADDR_LINKLOCAL (at->addr) || IN6_IS_ADDR_MC_LINKLOCAL (at->addr)) { at->scopeid = if_nametoindex (scope_delim + 1); if (at->scopeid == 0) try_numericscope = 1; } else try_numericscope = 1; if (try_numericscope != 0) { char *end; assert (sizeof (uint32_t) <= sizeof (unsigned long)); at->scopeid = (uint32_t) strtoul (scope_delim + 1, &end, 10); if (*end != '\0') { result = GAIH_OKIFUNSPEC | -EAI_NONAME; goto free_and_return; } } } if (req->ai_flags & AI_CANONNAME) canon = name; } } if (at->family == AF_UNSPEC && (req->ai_flags & AI_NUMERICHOST) == 0) { struct gaih_addrtuple **pat = &at; int no_data = 0; int no_inet6_data = 0; service_user *nip = NULL; enum nss_status inet6_status = NSS_STATUS_UNAVAIL; enum nss_status status = NSS_STATUS_UNAVAIL; int no_more; int old_res_options; /* If we do not have to look for IPv6 addresses, use the simple, old functions, which do not support IPv6 scope ids. */ if (req->ai_family == AF_INET) { size_t tmpbuflen = 512; assert (tmpbuf == NULL); tmpbuf = alloca_account (tmpbuflen, alloca_used); int rc; struct hostent th; struct hostent *h; int herrno; while (1) { rc = __gethostbyname2_r (name, AF_INET, &th, tmpbuf, tmpbuflen, &h, &herrno); if (rc != ERANGE || herrno != NETDB_INTERNAL) break; if (!malloc_tmpbuf && __libc_use_alloca (alloca_used + 2 * tmpbuflen)) tmpbuf = extend_alloca_account (tmpbuf, tmpbuflen, 2 * tmpbuflen, alloca_used); else { char *newp = realloc (malloc_tmpbuf ? tmpbuf : NULL, 2 * tmpbuflen); if (newp == NULL) { result = -EAI_MEMORY; goto free_and_return; } tmpbuf = newp; malloc_tmpbuf = true; tmpbuflen = 2 * tmpbuflen; } } if (rc == 0) { if (h != NULL) { int i; /* We found data, count the number of addresses. */ for (i = 0; h->h_addr_list[i]; ++i) ; if (i > 0 && *pat != NULL) --i; if (__libc_use_alloca (alloca_used + i * sizeof (struct gaih_addrtuple))) addrmem = alloca_account (i * sizeof (struct gaih_addrtuple), alloca_used); else { addrmem = malloc (i * sizeof (struct gaih_addrtuple)); if (addrmem == NULL) { result = -EAI_MEMORY; goto free_and_return; } malloc_addrmem = true; } /* Now convert it into the list. */ struct gaih_addrtuple *addrfree = addrmem; for (i = 0; h->h_addr_list[i]; ++i) { if (*pat == NULL) { *pat = addrfree++; (*pat)->scopeid = 0; } (*pat)->next = NULL; (*pat)->family = AF_INET; memcpy ((*pat)->addr, h->h_addr_list[i], h->h_length); pat = &((*pat)->next); } } } else { if (herrno == NETDB_INTERNAL) { __set_h_errno (herrno); result = -EAI_SYSTEM; } else if (herrno == TRY_AGAIN) result = -EAI_AGAIN; else /* We made requests but they turned out no data. The name is known, though. */ result = GAIH_OKIFUNSPEC | -EAI_NODATA; goto free_and_return; } goto process_list; } #ifdef USE_NSCD if (__nss_not_use_nscd_hosts > 0 && ++__nss_not_use_nscd_hosts > NSS_NSCD_RETRY) __nss_not_use_nscd_hosts = 0; if (!__nss_not_use_nscd_hosts && !__nss_database_custom[NSS_DBSIDX_hosts]) { /* Try to use nscd. */ struct nscd_ai_result *air = NULL; int herrno; int err = __nscd_getai (name, &air, &herrno); if (air != NULL) { /* Transform into gaih_addrtuple list. */ bool added_canon = (req->ai_flags & AI_CANONNAME) == 0; char *addrs = air->addrs; if (__libc_use_alloca (alloca_used + air->naddrs * sizeof (struct gaih_addrtuple))) addrmem = alloca_account (air->naddrs * sizeof (struct gaih_addrtuple), alloca_used); else { addrmem = malloc (air->naddrs * sizeof (struct gaih_addrtuple)); if (addrmem == NULL) { result = -EAI_MEMORY; goto free_and_return; } malloc_addrmem = true; } struct gaih_addrtuple *addrfree = addrmem; for (int i = 0; i < air->naddrs; ++i) { socklen_t size = (air->family[i] == AF_INET ? INADDRSZ : IN6ADDRSZ); if (*pat == NULL) { *pat = addrfree++; (*pat)->scopeid = 0; } uint32_t *pataddr = (*pat)->addr; (*pat)->next = NULL; if (added_canon || air->canon == NULL) (*pat)->name = NULL; else if (canonbuf == NULL) { size_t canonlen = strlen (air->canon) + 1; if ((req->ai_flags & AI_CANONIDN) != 0 && __libc_use_alloca (alloca_used + canonlen)) canonbuf = alloca_account (canonlen, alloca_used); else { canonbuf = malloc (canonlen); if (canonbuf == NULL) { result = -EAI_MEMORY; goto free_and_return; } malloc_canonbuf = true; } canon = (*pat)->name = memcpy (canonbuf, air->canon, canonlen); } if (air->family[i] == AF_INET && req->ai_family == AF_INET6 && (req->ai_flags & AI_V4MAPPED)) { (*pat)->family = AF_INET6; pataddr[3] = *(uint32_t *) addrs; pataddr[2] = htonl (0xffff); pataddr[1] = 0; pataddr[0] = 0; pat = &((*pat)->next); added_canon = true; } else if (req->ai_family == AF_UNSPEC || air->family[i] == req->ai_family) { (*pat)->family = air->family[i]; memcpy (pataddr, addrs, size); pat = &((*pat)->next); added_canon = true; if (air->family[i] == AF_INET6) got_ipv6 = true; } addrs += size; } free (air); if (at->family == AF_UNSPEC) { result = GAIH_OKIFUNSPEC | -EAI_NONAME; goto free_and_return; } goto process_list; } else if (err == 0) /* The database contains a negative entry. */ goto free_and_return; else if (__nss_not_use_nscd_hosts == 0) { if (herrno == NETDB_INTERNAL && errno == ENOMEM) result = -EAI_MEMORY; else if (herrno == TRY_AGAIN) result = -EAI_AGAIN; else result = -EAI_SYSTEM; goto free_and_return; } } #endif if (__nss_hosts_database != NULL) { no_more = 0; nip = __nss_hosts_database; } else no_more = __nss_database_lookup ("hosts", NULL, "dns [!UNAVAIL=return] files", &nip); /* Initialize configurations. */ if (__builtin_expect (!_res_hconf.initialized, 0)) _res_hconf_init (); if (__res_maybe_init (&_res, 0) == -1) no_more = 1; /* If we are looking for both IPv4 and IPv6 address we don't want the lookup functions to automatically promote IPv4 addresses to IPv6 addresses. Currently this is decided by setting the RES_USE_INET6 bit in _res.options. */ old_res_options = _res.options; _res.options &= ~RES_USE_INET6; size_t tmpbuflen = 1024; malloc_tmpbuf = !__libc_use_alloca (alloca_used + tmpbuflen); assert (tmpbuf == NULL); if (!malloc_tmpbuf) tmpbuf = alloca_account (tmpbuflen, alloca_used); else { tmpbuf = malloc (tmpbuflen); if (tmpbuf == NULL) { result = -EAI_MEMORY; goto free_and_return; } } while (!no_more) { no_data = 0; nss_gethostbyname4_r fct4 = __nss_lookup_function (nip, "gethostbyname4_r"); if (fct4 != NULL) { int herrno; while (1) { rc = 0; status = DL_CALL_FCT (fct4, (name, pat, tmpbuf, tmpbuflen, &rc, &herrno, NULL)); if (status == NSS_STATUS_SUCCESS) break; if (status != NSS_STATUS_TRYAGAIN || rc != ERANGE || herrno != NETDB_INTERNAL) { if (status == NSS_STATUS_TRYAGAIN && herrno == TRY_AGAIN) no_data = EAI_AGAIN; else no_data = herrno == NO_DATA; break; } if (!malloc_tmpbuf && __libc_use_alloca (alloca_used + 2 * tmpbuflen)) tmpbuf = extend_alloca_account (tmpbuf, tmpbuflen, 2 * tmpbuflen, alloca_used); else { char *newp = realloc (malloc_tmpbuf ? tmpbuf : NULL, 2 * tmpbuflen); if (newp == NULL) { result = -EAI_MEMORY; goto free_and_return; } tmpbuf = newp; malloc_tmpbuf = true; tmpbuflen = 2 * tmpbuflen; } } if (status == NSS_STATUS_SUCCESS) { assert (!no_data); no_data = 1; if ((req->ai_flags & AI_CANONNAME) != 0 && canon == NULL) canon = (*pat)->name; while (*pat != NULL) { if ((*pat)->family == AF_INET && req->ai_family == AF_INET6 && (req->ai_flags & AI_V4MAPPED) != 0) { uint32_t *pataddr = (*pat)->addr; (*pat)->family = AF_INET6; pataddr[3] = pataddr[0]; pataddr[2] = htonl (0xffff); pataddr[1] = 0; pataddr[0] = 0; pat = &((*pat)->next); no_data = 0; } else if (req->ai_family == AF_UNSPEC || (*pat)->family == req->ai_family) { pat = &((*pat)->next); no_data = 0; if (req->ai_family == AF_INET6) got_ipv6 = true; } else *pat = ((*pat)->next); } } no_inet6_data = no_data; } else { nss_gethostbyname3_r fct = NULL; if (req->ai_flags & AI_CANONNAME) /* No need to use this function if we do not look for the canonical name. The function does not exist in all NSS modules and therefore the lookup would often fail. */ fct = __nss_lookup_function (nip, "gethostbyname3_r"); if (fct == NULL) /* We are cheating here. The gethostbyname2_r function does not have the same interface as gethostbyname3_r but the extra arguments the latter takes are added at the end. So the gethostbyname2_r code will just ignore them. */ fct = __nss_lookup_function (nip, "gethostbyname2_r"); if (fct != NULL) { if (req->ai_family == AF_INET6 || req->ai_family == AF_UNSPEC) { gethosts (AF_INET6, struct in6_addr); no_inet6_data = no_data; inet6_status = status; } if (req->ai_family == AF_INET || req->ai_family == AF_UNSPEC || (req->ai_family == AF_INET6 && (req->ai_flags & AI_V4MAPPED) /* Avoid generating the mapped addresses if we know we are not going to need them. */ && ((req->ai_flags & AI_ALL) || !got_ipv6))) { gethosts (AF_INET, struct in_addr); if (req->ai_family == AF_INET) { no_inet6_data = no_data; inet6_status = status; } } /* If we found one address for AF_INET or AF_INET6, don't continue the search. */ if (inet6_status == NSS_STATUS_SUCCESS || status == NSS_STATUS_SUCCESS) { if ((req->ai_flags & AI_CANONNAME) != 0 && canon == NULL) { /* If we need the canonical name, get it from the same service as the result. */ nss_getcanonname_r cfct; int herrno; cfct = __nss_lookup_function (nip, "getcanonname_r"); if (cfct != NULL) { const size_t max_fqdn_len = 256; if ((req->ai_flags & AI_CANONIDN) != 0 && __libc_use_alloca (alloca_used + max_fqdn_len)) canonbuf = alloca_account (max_fqdn_len, alloca_used); else { canonbuf = malloc (max_fqdn_len); if (canonbuf == NULL) { result = -EAI_MEMORY; goto free_and_return; } malloc_canonbuf = true; } char *s; if (DL_CALL_FCT (cfct, (at->name ?: name, canonbuf, max_fqdn_len, &s, &rc, &herrno)) == NSS_STATUS_SUCCESS) canon = s; else { /* Set to name now to avoid using gethostbyaddr. */ if (malloc_canonbuf) { free (canonbuf); malloc_canonbuf = false; } canon = name; } } } status = NSS_STATUS_SUCCESS; } else { /* We can have different states for AF_INET and AF_INET6. Try to find a useful one for both. */ if (inet6_status == NSS_STATUS_TRYAGAIN) status = NSS_STATUS_TRYAGAIN; else if (status == NSS_STATUS_UNAVAIL && inet6_status != NSS_STATUS_UNAVAIL) status = inet6_status; } } else status = NSS_STATUS_UNAVAIL; } if (nss_next_action (nip, status) == NSS_ACTION_RETURN) break; if (nip->next == NULL) no_more = -1; else nip = nip->next; } _res.options |= old_res_options & RES_USE_INET6; if (no_data != 0 && no_inet6_data != 0) { /* If both requests timed out report this. */ if (no_data == EAI_AGAIN && no_inet6_data == EAI_AGAIN) result = -EAI_AGAIN; else /* We made requests but they turned out no data. The name is known, though. */ result = GAIH_OKIFUNSPEC | -EAI_NODATA; goto free_and_return; } } process_list: if (at->family == AF_UNSPEC) { result = GAIH_OKIFUNSPEC | -EAI_NONAME; goto free_and_return; } } else { struct gaih_addrtuple *atr; atr = at = alloca_account (sizeof (struct gaih_addrtuple), alloca_used); memset (at, '\0', sizeof (struct gaih_addrtuple)); if (req->ai_family == AF_UNSPEC) { at->next = __alloca (sizeof (struct gaih_addrtuple)); memset (at->next, '\0', sizeof (struct gaih_addrtuple)); } if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET6) { at->family = AF_INET6; if ((req->ai_flags & AI_PASSIVE) == 0) memcpy (at->addr, &in6addr_loopback, sizeof (struct in6_addr)); atr = at->next; } if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET) { atr->family = AF_INET; if ((req->ai_flags & AI_PASSIVE) == 0) atr->addr[0] = htonl (INADDR_LOOPBACK); } } { struct gaih_servtuple *st2; struct gaih_addrtuple *at2 = at; size_t socklen; sa_family_t family; /* buffer is the size of an unformatted IPv6 address in printable format. */ while (at2 != NULL) { /* Only the first entry gets the canonical name. */ if (at2 == at && (req->ai_flags & AI_CANONNAME) != 0) { char *tmpbuf2 = NULL; bool malloc_tmpbuf2 = false; if (canon == NULL) { struct hostent *h = NULL; int herrno; struct hostent th; size_t tmpbuf2len = 512; do { if (__libc_use_alloca (alloca_used + 2 * tmpbuf2len)) tmpbuf2 = extend_alloca_account (tmpbuf2, tmpbuf2len, tmpbuf2len * 2, alloca_used); else { char *newp = realloc (malloc_tmpbuf2 ? tmpbuf2 : NULL, 2 * tmpbuf2len); if (newp == NULL) { if (malloc_tmpbuf2) free (tmpbuf2); result = -EAI_MEMORY; goto free_and_return; } tmpbuf2 = newp; tmpbuf2len = 2 * tmpbuf2len; malloc_tmpbuf2 = true; } rc = __gethostbyaddr_r (at2->addr, ((at2->family == AF_INET6) ? sizeof (struct in6_addr) : sizeof (struct in_addr)), at2->family, &th, tmpbuf2, tmpbuf2len, &h, &herrno); } while (rc == ERANGE && herrno == NETDB_INTERNAL); if (rc != 0 && herrno == NETDB_INTERNAL) { if (malloc_tmpbuf2) free (tmpbuf2); __set_h_errno (herrno); result = -EAI_SYSTEM; goto free_and_return; } if (h != NULL) canon = h->h_name; else { assert (orig_name != NULL); /* If the canonical name cannot be determined, use the passed in string. */ canon = orig_name; } } #ifdef HAVE_LIBIDN if (req->ai_flags & AI_CANONIDN) { int idn_flags = 0; if (req->ai_flags & AI_IDN_ALLOW_UNASSIGNED) idn_flags |= IDNA_ALLOW_UNASSIGNED; if (req->ai_flags & AI_IDN_USE_STD3_ASCII_RULES) idn_flags |= IDNA_USE_STD3_ASCII_RULES; char *out; int rc = __idna_to_unicode_lzlz (canon, &out, idn_flags); if (rc != IDNA_SUCCESS) { if (malloc_tmpbuf2) free (tmpbuf2); if (rc == IDNA_MALLOC_ERROR) result = -EAI_MEMORY; else if (rc == IDNA_DLOPEN_ERROR) result = -EAI_SYSTEM; else result = -EAI_IDN_ENCODE; goto free_and_return; } /* In case the output string is the same as the input string no new string has been allocated and we make a copy. */ if (out == canon) goto make_copy; canon = out; } else #endif { #ifdef HAVE_LIBIDN make_copy: #endif if (malloc_canonbuf) /* We already allocated the string using malloc. */ malloc_canonbuf = false; else { canon = strdup (canon); if (canon == NULL) { if (malloc_tmpbuf2) free (tmpbuf2); result = -EAI_MEMORY; goto free_and_return; } } } if (malloc_tmpbuf2) free (tmpbuf2); } family = at2->family; if (family == AF_INET6) { socklen = sizeof (struct sockaddr_in6); /* If we looked up IPv4 mapped address discard them here if the caller isn't interested in all address and we have found at least one IPv6 address. */ if (got_ipv6 && (req->ai_flags & (AI_V4MAPPED|AI_ALL)) == AI_V4MAPPED && IN6_IS_ADDR_V4MAPPED (at2->addr)) goto ignore; } else socklen = sizeof (struct sockaddr_in); for (st2 = st; st2 != NULL; st2 = st2->next) { struct addrinfo *ai; ai = *pai = malloc (sizeof (struct addrinfo) + socklen); if (ai == NULL) { free ((char *) canon); result = -EAI_MEMORY; goto free_and_return; } ai->ai_flags = req->ai_flags; ai->ai_family = family; ai->ai_socktype = st2->socktype; ai->ai_protocol = st2->protocol; ai->ai_addrlen = socklen; ai->ai_addr = (void *) (ai + 1); /* We only add the canonical name once. */ ai->ai_canonname = (char *) canon; canon = NULL; #ifdef _HAVE_SA_LEN ai->ai_addr->sa_len = socklen; #endif /* _HAVE_SA_LEN */ ai->ai_addr->sa_family = family; /* In case of an allocation error the list must be NULL terminated. */ ai->ai_next = NULL; if (family == AF_INET6) { struct sockaddr_in6 *sin6p = (struct sockaddr_in6 *) ai->ai_addr; sin6p->sin6_port = st2->port; sin6p->sin6_flowinfo = 0; memcpy (&sin6p->sin6_addr, at2->addr, sizeof (struct in6_addr)); sin6p->sin6_scope_id = at2->scopeid; } else { struct sockaddr_in *sinp = (struct sockaddr_in *) ai->ai_addr; sinp->sin_port = st2->port; memcpy (&sinp->sin_addr, at2->addr, sizeof (struct in_addr)); memset (sinp->sin_zero, '\0', sizeof (sinp->sin_zero)); } pai = &(ai->ai_next); } ++*naddrs; ignore: at2 = at2->next; } } free_and_return: if (malloc_name) free ((char *) name); if (malloc_addrmem) free (addrmem); if (malloc_canonbuf) free (canonbuf); if (malloc_tmpbuf) free (tmpbuf); return result; } struct sort_result { struct addrinfo *dest_addr; /* Using sockaddr_storage is for now overkill. We only support IPv4 and IPv6 so far. If this changes at some point we can adjust the type here. */ struct sockaddr_in6 source_addr; uint8_t source_addr_len; bool got_source_addr; uint8_t source_addr_flags; uint8_t prefixlen; uint32_t index; int32_t native; }; struct sort_result_combo { struct sort_result *results; int nresults; }; #if __BYTE_ORDER == __BIG_ENDIAN # define htonl_c(n) n #else # define htonl_c(n) __bswap_constant_32 (n) #endif static const struct scopeentry { union { char addr[4]; uint32_t addr32; }; uint32_t netmask; int32_t scope; } default_scopes[] = { /* Link-local addresses: scope 2. */ { { { 169, 254, 0, 0 } }, htonl_c (0xffff0000), 2 }, { { { 127, 0, 0, 0 } }, htonl_c (0xff000000), 2 }, /* Site-local addresses: scope 5. */ { { { 10, 0, 0, 0 } }, htonl_c (0xff000000), 5 }, { { { 172, 16, 0, 0 } }, htonl_c (0xfff00000), 5 }, { { { 192, 168, 0, 0 } }, htonl_c (0xffff0000), 5 }, /* Default: scope 14. */ { { { 0, 0, 0, 0 } }, htonl_c (0x00000000), 14 } }; /* The label table. */ static const struct scopeentry *scopes; static int get_scope (const struct sockaddr_in6 *in6) { int scope; if (in6->sin6_family == PF_INET6) { if (! IN6_IS_ADDR_MULTICAST (&in6->sin6_addr)) { if (IN6_IS_ADDR_LINKLOCAL (&in6->sin6_addr) /* RFC 4291 2.5.3 says that the loopback address is to be treated like a link-local address. */ || IN6_IS_ADDR_LOOPBACK (&in6->sin6_addr)) scope = 2; else if (IN6_IS_ADDR_SITELOCAL (&in6->sin6_addr)) scope = 5; else /* XXX Is this the correct default behavior? */ scope = 14; } else scope = in6->sin6_addr.s6_addr[1] & 0xf; } else if (in6->sin6_family == PF_INET) { const struct sockaddr_in *in = (const struct sockaddr_in *) in6; size_t cnt = 0; while (1) { if ((in->sin_addr.s_addr & scopes[cnt].netmask) == scopes[cnt].addr32) return scopes[cnt].scope; ++cnt; } /* NOTREACHED */ } else /* XXX What is a good default? */ scope = 15; return scope; } struct prefixentry { struct in6_addr prefix; unsigned int bits; int val; }; /* The label table. */ static const struct prefixentry *labels; /* Default labels. */ static const struct prefixentry default_labels[] = { /* See RFC 3484 for the details. */ { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 } } }, 128, 0 }, { { .__in6_u = { .__u6_addr8 = { 0x20, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 16, 2 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 96, 3 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 } } }, 96, 4 }, /* The next two entries differ from RFC 3484. We need to treat IPv6 site-local addresses special because they are never NATed, unlike site-locale IPv4 addresses. If this would not happen, on machines which have only IPv4 and IPv6 site-local addresses, the sorting would prefer the IPv6 site-local addresses, causing unnecessary delays when trying to connect to a global IPv6 address through a site-local IPv6 address. */ { { .__in6_u = { .__u6_addr8 = { 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 10, 5 }, { { .__in6_u = { .__u6_addr8 = { 0xfc, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 7, 6 }, /* Additional rule for Teredo tunnels. */ { { .__in6_u = { .__u6_addr8 = { 0x20, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 32, 7 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 0, 1 } }; /* The precedence table. */ static const struct prefixentry *precedence; /* The default precedences. */ static const struct prefixentry default_precedence[] = { /* See RFC 3484 for the details. */ { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 } } }, 128, 50 }, { { .__in6_u = { .__u6_addr8 = { 0x20, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 16, 30 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 96, 20 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 } } }, 96, 10 }, { { .__in6_u = { .__u6_addr8 = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } }, 0, 40 } }; static int match_prefix (const struct sockaddr_in6 *in6, const struct prefixentry *list, int default_val) { int idx; struct sockaddr_in6 in6_mem; if (in6->sin6_family == PF_INET) { const struct sockaddr_in *in = (const struct sockaddr_in *) in6; /* Construct a V4-to-6 mapped address. */ in6_mem.sin6_family = PF_INET6; in6_mem.sin6_port = in->sin_port; in6_mem.sin6_flowinfo = 0; memset (&in6_mem.sin6_addr, '\0', sizeof (in6_mem.sin6_addr)); in6_mem.sin6_addr.s6_addr16[5] = 0xffff; in6_mem.sin6_addr.s6_addr32[3] = in->sin_addr.s_addr; in6_mem.sin6_scope_id = 0; in6 = &in6_mem; } else if (in6->sin6_family != PF_INET6) return default_val; for (idx = 0; ; ++idx) { unsigned int bits = list[idx].bits; const uint8_t *mask = list[idx].prefix.s6_addr; const uint8_t *val = in6->sin6_addr.s6_addr; while (bits >= 8) { if (*mask != *val) break; ++mask; ++val; bits -= 8; } if (bits < 8) { if ((*mask & (0xff00 >> bits)) == (*val & (0xff00 >> bits))) /* Match! */ break; } } return list[idx].val; } static int get_label (const struct sockaddr_in6 *in6) { /* XXX What is a good default value? */ return match_prefix (in6, labels, INT_MAX); } static int get_precedence (const struct sockaddr_in6 *in6) { /* XXX What is a good default value? */ return match_prefix (in6, precedence, 0); } /* Find last bit set in a word. */ static int fls (uint32_t a) { uint32_t mask; int n; for (n = 0, mask = 1 << 31; n < 32; mask >>= 1, ++n) if ((a & mask) != 0) break; return n; } static int rfc3484_sort (const void *p1, const void *p2, void *arg) { const size_t idx1 = *(const size_t *) p1; const size_t idx2 = *(const size_t *) p2; struct sort_result_combo *src = (struct sort_result_combo *) arg; struct sort_result *a1 = &src->results[idx1]; struct sort_result *a2 = &src->results[idx2]; /* Rule 1: Avoid unusable destinations. We have the got_source_addr flag set if the destination is reachable. */ if (a1->got_source_addr && ! a2->got_source_addr) return -1; if (! a1->got_source_addr && a2->got_source_addr) return 1; /* Rule 2: Prefer matching scope. Only interesting if both destination addresses are IPv6. */ int a1_dst_scope = get_scope ((struct sockaddr_in6 *) a1->dest_addr->ai_addr); int a2_dst_scope = get_scope ((struct sockaddr_in6 *) a2->dest_addr->ai_addr); if (a1->got_source_addr) { int a1_src_scope = get_scope (&a1->source_addr); int a2_src_scope = get_scope (&a2->source_addr); if (a1_dst_scope == a1_src_scope && a2_dst_scope != a2_src_scope) return -1; if (a1_dst_scope != a1_src_scope && a2_dst_scope == a2_src_scope) return 1; } /* Rule 3: Avoid deprecated addresses. */ if (a1->got_source_addr) { if (!(a1->source_addr_flags & in6ai_deprecated) && (a2->source_addr_flags & in6ai_deprecated)) return -1; if ((a1->source_addr_flags & in6ai_deprecated) && !(a2->source_addr_flags & in6ai_deprecated)) return 1; } /* Rule 4: Prefer home addresses. */ if (a1->got_source_addr) { if (!(a1->source_addr_flags & in6ai_homeaddress) && (a2->source_addr_flags & in6ai_homeaddress)) return 1; if ((a1->source_addr_flags & in6ai_homeaddress) && !(a2->source_addr_flags & in6ai_homeaddress)) return -1; } /* Rule 5: Prefer matching label. */ if (a1->got_source_addr) { int a1_dst_label = get_label ((struct sockaddr_in6 *) a1->dest_addr->ai_addr); int a1_src_label = get_label (&a1->source_addr); int a2_dst_label = get_label ((struct sockaddr_in6 *) a2->dest_addr->ai_addr); int a2_src_label = get_label (&a2->source_addr); if (a1_dst_label == a1_src_label && a2_dst_label != a2_src_label) return -1; if (a1_dst_label != a1_src_label && a2_dst_label == a2_src_label) return 1; } /* Rule 6: Prefer higher precedence. */ int a1_prec = get_precedence ((struct sockaddr_in6 *) a1->dest_addr->ai_addr); int a2_prec = get_precedence ((struct sockaddr_in6 *) a2->dest_addr->ai_addr); if (a1_prec > a2_prec) return -1; if (a1_prec < a2_prec) return 1; /* Rule 7: Prefer native transport. */ if (a1->got_source_addr) { /* The same interface index means the same interface which means there is no difference in transport. This should catch many (most?) cases. */ if (a1->index != a2->index) { int a1_native = a1->native; int a2_native = a2->native; if (a1_native == -1 || a2_native == -1) { uint32_t a1_index; if (a1_native == -1) { /* If we do not have the information use 'native' as the default. */ a1_native = 0; a1_index = a1->index; } else a1_index = 0xffffffffu; uint32_t a2_index; if (a2_native == -1) { /* If we do not have the information use 'native' as the default. */ a2_native = 0; a2_index = a2->index; } else a2_index = 0xffffffffu; __check_native (a1_index, &a1_native, a2_index, &a2_native); /* Fill in the results in all the records. */ for (int i = 0; i < src->nresults; ++i) if (src->results[i].index == a1_index) { assert (src->results[i].native == -1 || src->results[i].native == a1_native); src->results[i].native = a1_native; } else if (src->results[i].index == a2_index) { assert (src->results[i].native == -1 || src->results[i].native == a2_native); src->results[i].native = a2_native; } } if (a1_native && !a2_native) return -1; if (!a1_native && a2_native) return 1; } } /* Rule 8: Prefer smaller scope. */ if (a1_dst_scope < a2_dst_scope) return -1; if (a1_dst_scope > a2_dst_scope) return 1; /* Rule 9: Use longest matching prefix. */ if (a1->got_source_addr && a1->dest_addr->ai_family == a2->dest_addr->ai_family) { int bit1 = 0; int bit2 = 0; if (a1->dest_addr->ai_family == PF_INET) { assert (a1->source_addr.sin6_family == PF_INET); assert (a2->source_addr.sin6_family == PF_INET); /* Outside of subnets, as defined by the network masks, common address prefixes for IPv4 addresses make no sense. So, define a non-zero value only if source and destination address are on the same subnet. */ struct sockaddr_in *in1_dst = (struct sockaddr_in *) a1->dest_addr->ai_addr; in_addr_t in1_dst_addr = ntohl (in1_dst->sin_addr.s_addr); struct sockaddr_in *in1_src = (struct sockaddr_in *) &a1->source_addr; in_addr_t in1_src_addr = ntohl (in1_src->sin_addr.s_addr); in_addr_t netmask1 = 0xffffffffu << (32 - a1->prefixlen); if ((in1_src_addr & netmask1) == (in1_dst_addr & netmask1)) bit1 = fls (in1_dst_addr ^ in1_src_addr); struct sockaddr_in *in2_dst = (struct sockaddr_in *) a2->dest_addr->ai_addr; in_addr_t in2_dst_addr = ntohl (in2_dst->sin_addr.s_addr); struct sockaddr_in *in2_src = (struct sockaddr_in *) &a2->source_addr; in_addr_t in2_src_addr = ntohl (in2_src->sin_addr.s_addr); in_addr_t netmask2 = 0xffffffffu << (32 - a2->prefixlen); if ((in2_src_addr & netmask2) == (in2_dst_addr & netmask2)) bit2 = fls (in2_dst_addr ^ in2_src_addr); } else if (a1->dest_addr->ai_family == PF_INET6) { assert (a1->source_addr.sin6_family == PF_INET6); assert (a2->source_addr.sin6_family == PF_INET6); struct sockaddr_in6 *in1_dst; struct sockaddr_in6 *in1_src; struct sockaddr_in6 *in2_dst; struct sockaddr_in6 *in2_src; in1_dst = (struct sockaddr_in6 *) a1->dest_addr->ai_addr; in1_src = (struct sockaddr_in6 *) &a1->source_addr; in2_dst = (struct sockaddr_in6 *) a2->dest_addr->ai_addr; in2_src = (struct sockaddr_in6 *) &a2->source_addr; int i; for (i = 0; i < 4; ++i) if (in1_dst->sin6_addr.s6_addr32[i] != in1_src->sin6_addr.s6_addr32[i] || (in2_dst->sin6_addr.s6_addr32[i] != in2_src->sin6_addr.s6_addr32[i])) break; if (i < 4) { bit1 = fls (ntohl (in1_dst->sin6_addr.s6_addr32[i] ^ in1_src->sin6_addr.s6_addr32[i])); bit2 = fls (ntohl (in2_dst->sin6_addr.s6_addr32[i] ^ in2_src->sin6_addr.s6_addr32[i])); } } if (bit1 > bit2) return -1; if (bit1 < bit2) return 1; } /* Rule 10: Otherwise, leave the order unchanged. To ensure this compare with the value indicating the order in which the entries have been received from the services. NB: no two entries can have the same order so the test will never return zero. */ return idx1 < idx2 ? -1 : 1; } static int in6aicmp (const void *p1, const void *p2) { struct in6addrinfo *a1 = (struct in6addrinfo *) p1; struct in6addrinfo *a2 = (struct in6addrinfo *) p2; return memcmp (a1->addr, a2->addr, sizeof (a1->addr)); } /* Name of the config file for RFC 3484 sorting (for now). */ #define GAICONF_FNAME "/etc/gai.conf" /* Non-zero if we are supposed to reload the config file automatically whenever it changed. */ static int gaiconf_reload_flag; /* Non-zero if gaiconf_reload_flag was ever set to true. */ static int gaiconf_reload_flag_ever_set; /* Last modification time. */ static struct timespec gaiconf_mtime; libc_freeres_fn(fini) { if (labels != default_labels) { const struct prefixentry *old = labels; labels = default_labels; free ((void *) old); } if (precedence != default_precedence) { const struct prefixentry *old = precedence; precedence = default_precedence; free ((void *) old); } if (scopes != default_scopes) { const struct scopeentry *old = scopes; scopes = default_scopes; free ((void *) old); } } struct prefixlist { struct prefixentry entry; struct prefixlist *next; }; struct scopelist { struct scopeentry entry; struct scopelist *next; }; static void free_prefixlist (struct prefixlist *list) { while (list != NULL) { struct prefixlist *oldp = list; list = list->next; free (oldp); } } static void free_scopelist (struct scopelist *list) { while (list != NULL) { struct scopelist *oldp = list; list = list->next; free (oldp); } } static int prefixcmp (const void *p1, const void *p2) { const struct prefixentry *e1 = (const struct prefixentry *) p1; const struct prefixentry *e2 = (const struct prefixentry *) p2; if (e1->bits < e2->bits) return 1; if (e1->bits == e2->bits) return 0; return -1; } static int scopecmp (const void *p1, const void *p2) { const struct scopeentry *e1 = (const struct scopeentry *) p1; const struct scopeentry *e2 = (const struct scopeentry *) p2; if (e1->netmask > e2->netmask) return -1; if (e1->netmask == e2->netmask) return 0; return 1; } static void gaiconf_init (void) { struct prefixlist *labellist = NULL; size_t nlabellist = 0; bool labellist_nullbits = false; struct prefixlist *precedencelist = NULL; size_t nprecedencelist = 0; bool precedencelist_nullbits = false; struct scopelist *scopelist = NULL; size_t nscopelist = 0; bool scopelist_nullbits = false; FILE *fp = fopen (GAICONF_FNAME, "rc"); if (fp != NULL) { struct stat64 st; if (__fxstat64 (_STAT_VER, fileno (fp), &st) != 0) { fclose (fp); goto no_file; } char *line = NULL; size_t linelen = 0; __fsetlocking (fp, FSETLOCKING_BYCALLER); while (!feof_unlocked (fp)) { ssize_t n = __getline (&line, &linelen, fp); if (n <= 0) break; /* Handle comments. No escaping possible so this is easy. */ char *cp = strchr (line, '#'); if (cp != NULL) *cp = '\0'; cp = line; while (isspace (*cp)) ++cp; char *cmd = cp; while (*cp != '\0' && !isspace (*cp)) ++cp; size_t cmdlen = cp - cmd; if (*cp != '\0') *cp++ = '\0'; while (isspace (*cp)) ++cp; char *val1 = cp; while (*cp != '\0' && !isspace (*cp)) ++cp; size_t val1len = cp - cmd; /* We always need at least two values. */ if (val1len == 0) continue; if (*cp != '\0') *cp++ = '\0'; while (isspace (*cp)) ++cp; char *val2 = cp; while (*cp != '\0' && !isspace (*cp)) ++cp; /* Ignore the rest of the line. */ *cp = '\0'; struct prefixlist **listp; size_t *lenp; bool *nullbitsp; switch (cmdlen) { case 5: if (strcmp (cmd, "label") == 0) { struct in6_addr prefix; unsigned long int bits; unsigned long int val; char *endp; listp = &labellist; lenp = &nlabellist; nullbitsp = &labellist_nullbits; new_elem: bits = 128; __set_errno (0); cp = strchr (val1, '/'); if (cp != NULL) *cp++ = '\0'; if (inet_pton (AF_INET6, val1, &prefix) && (cp == NULL || (bits = strtoul (cp, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && bits <= 128 && ((val = strtoul (val2, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && val <= INT_MAX) { struct prefixlist *newp = malloc (sizeof (*newp)); if (newp == NULL) { free (line); fclose (fp); goto no_file; } memcpy (&newp->entry.prefix, &prefix, sizeof (prefix)); newp->entry.bits = bits; newp->entry.val = val; newp->next = *listp; *listp = newp; ++*lenp; *nullbitsp |= bits == 0; } } break; case 6: if (strcmp (cmd, "reload") == 0) { gaiconf_reload_flag = strcmp (val1, "yes") == 0; if (gaiconf_reload_flag) gaiconf_reload_flag_ever_set = 1; } break; case 7: if (strcmp (cmd, "scopev4") == 0) { struct in6_addr prefix; unsigned long int bits; unsigned long int val; char *endp; bits = 32; __set_errno (0); cp = strchr (val1, '/'); if (cp != NULL) *cp++ = '\0'; if (inet_pton (AF_INET6, val1, &prefix)) { bits = 128; if (IN6_IS_ADDR_V4MAPPED (&prefix) && (cp == NULL || (bits = strtoul (cp, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && bits >= 96 && bits <= 128 && ((val = strtoul (val2, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && val <= INT_MAX) { struct scopelist *newp; new_scope: newp = malloc (sizeof (*newp)); if (newp == NULL) { free (line); fclose (fp); goto no_file; } newp->entry.netmask = htonl (bits != 96 ? (0xffffffff << (128 - bits)) : 0); newp->entry.addr32 = (prefix.s6_addr32[3] & newp->entry.netmask); newp->entry.scope = val; newp->next = scopelist; scopelist = newp; ++nscopelist; scopelist_nullbits |= bits == 96; } } else if (inet_pton (AF_INET, val1, &prefix.s6_addr32[3]) && (cp == NULL || (bits = strtoul (cp, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && bits <= 32 && ((val = strtoul (val2, &endp, 10)) != ULONG_MAX || errno != ERANGE) && *endp == '\0' && val <= INT_MAX) { bits += 96; goto new_scope; } } break; case 10: if (strcmp (cmd, "precedence") == 0) { listp = &precedencelist; lenp = &nprecedencelist; nullbitsp = &precedencelist_nullbits; goto new_elem; } break; } } free (line); fclose (fp); /* Create the array for the labels. */ struct prefixentry *new_labels; if (nlabellist > 0) { if (!labellist_nullbits) ++nlabellist; new_labels = malloc (nlabellist * sizeof (*new_labels)); if (new_labels == NULL) goto no_file; int i = nlabellist; if (!labellist_nullbits) { --i; memset (&new_labels[i].prefix, '\0', sizeof (struct in6_addr)); new_labels[i].bits = 0; new_labels[i].val = 1; } struct prefixlist *l = labellist; while (i-- > 0) { new_labels[i] = l->entry; l = l->next; } free_prefixlist (labellist); /* Sort the entries so that the most specific ones are at the beginning. */ qsort (new_labels, nlabellist, sizeof (*new_labels), prefixcmp); } else new_labels = (struct prefixentry *) default_labels; struct prefixentry *new_precedence; if (nprecedencelist > 0) { if (!precedencelist_nullbits) ++nprecedencelist; new_precedence = malloc (nprecedencelist * sizeof (*new_precedence)); if (new_precedence == NULL) { if (new_labels != default_labels) free (new_labels); goto no_file; } int i = nprecedencelist; if (!precedencelist_nullbits) { --i; memset (&new_precedence[i].prefix, '\0', sizeof (struct in6_addr)); new_precedence[i].bits = 0; new_precedence[i].val = 40; } struct prefixlist *l = precedencelist; while (i-- > 0) { new_precedence[i] = l->entry; l = l->next; } free_prefixlist (precedencelist); /* Sort the entries so that the most specific ones are at the beginning. */ qsort (new_precedence, nprecedencelist, sizeof (*new_precedence), prefixcmp); } else new_precedence = (struct prefixentry *) default_precedence; struct scopeentry *new_scopes; if (nscopelist > 0) { if (!scopelist_nullbits) ++nscopelist; new_scopes = malloc (nscopelist * sizeof (*new_scopes)); if (new_scopes == NULL) { if (new_labels != default_labels) free (new_labels); if (new_precedence != default_precedence) free (new_precedence); goto no_file; } int i = nscopelist; if (!scopelist_nullbits) { --i; new_scopes[i].addr32 = 0; new_scopes[i].netmask = 0; new_scopes[i].scope = 14; } struct scopelist *l = scopelist; while (i-- > 0) { new_scopes[i] = l->entry; l = l->next; } free_scopelist (scopelist); /* Sort the entries so that the most specific ones are at the beginning. */ qsort (new_scopes, nscopelist, sizeof (*new_scopes), scopecmp); } else new_scopes = (struct scopeentry *) default_scopes; /* Now we are ready to replace the values. */ const struct prefixentry *old = labels; labels = new_labels; if (old != default_labels) free ((void *) old); old = precedence; precedence = new_precedence; if (old != default_precedence) free ((void *) old); const struct scopeentry *oldscope = scopes; scopes = new_scopes; if (oldscope != default_scopes) free ((void *) oldscope); gaiconf_mtime = st.st_mtim; } else { no_file: free_prefixlist (labellist); free_prefixlist (precedencelist); free_scopelist (scopelist); /* If we previously read the file but it is gone now, free the old data and use the builtin one. Leave the reload flag alone. */ fini (); } } static void gaiconf_reload (void) { struct stat64 st; if (__xstat64 (_STAT_VER, GAICONF_FNAME, &st) != 0 || memcmp (&st.st_mtim, &gaiconf_mtime, sizeof (gaiconf_mtime)) != 0) gaiconf_init (); } int getaddrinfo (const char *name, const char *service, const struct addrinfo *hints, struct addrinfo **pai) { int i = 0, last_i = 0; int nresults = 0; struct addrinfo *p = NULL; struct gaih_service gaih_service, *pservice; struct addrinfo local_hints; if (name != NULL && name[0] == '*' && name[1] == 0) name = NULL; if (service != NULL && service[0] == '*' && service[1] == 0) service = NULL; if (name == NULL && service == NULL) return EAI_NONAME; if (hints == NULL) hints = &default_hints; if (hints->ai_flags & ~(AI_PASSIVE|AI_CANONNAME|AI_NUMERICHOST|AI_ADDRCONFIG|AI_V4MAPPED #ifdef HAVE_LIBIDN |AI_IDN|AI_CANONIDN|AI_IDN_ALLOW_UNASSIGNED |AI_IDN_USE_STD3_ASCII_RULES #endif |AI_NUMERICSERV|AI_ALL)) return EAI_BADFLAGS; if ((hints->ai_flags & AI_CANONNAME) && name == NULL) return EAI_BADFLAGS; struct in6addrinfo *in6ai = NULL; size_t in6ailen = 0; bool seen_ipv4 = false; bool seen_ipv6 = false; bool check_pf_called = false; if (hints->ai_flags & AI_ADDRCONFIG) { /* We might need information about what interfaces are available. Also determine whether we have IPv4 or IPv6 interfaces or both. We cannot cache the results since new interfaces could be added at any time. */ __check_pf (&seen_ipv4, &seen_ipv6, &in6ai, &in6ailen); check_pf_called = true; /* Now make a decision on what we return, if anything. */ if (hints->ai_family == PF_UNSPEC && (seen_ipv4 || seen_ipv6)) { /* If we haven't seen both IPv4 and IPv6 interfaces we can narrow down the search. */ if ((! seen_ipv4 || ! seen_ipv6) && (seen_ipv4 || seen_ipv6)) { local_hints = *hints; local_hints.ai_family = seen_ipv4 ? PF_INET : PF_INET6; hints = &local_hints; } } else if ((hints->ai_family == PF_INET && ! seen_ipv4) || (hints->ai_family == PF_INET6 && ! seen_ipv6)) { /* We cannot possibly return a valid answer. */ free (in6ai); return EAI_NONAME; } } if (service && service[0]) { char *c; gaih_service.name = service; gaih_service.num = strtoul (gaih_service.name, &c, 10); if (*c != '\0') { if (hints->ai_flags & AI_NUMERICSERV) { free (in6ai); return EAI_NONAME; } gaih_service.num = -1; } pservice = &gaih_service; } else pservice = NULL; struct addrinfo **end = &p; unsigned int naddrs = 0; if (hints->ai_family == AF_UNSPEC || hints->ai_family == AF_INET || hints->ai_family == AF_INET6) { last_i = gaih_inet (name, pservice, hints, end, &naddrs); if (last_i != 0) { freeaddrinfo (p); free (in6ai); return -(last_i & GAIH_EAI); } while (*end) { end = &((*end)->ai_next); ++nresults; } } else { free (in6ai); return EAI_FAMILY; } if (naddrs > 1) { /* Read the config file. */ __libc_once_define (static, once); __typeof (once) old_once = once; __libc_once (once, gaiconf_init); /* Sort results according to RFC 3484. */ struct sort_result results[nresults]; size_t order[nresults]; struct addrinfo *q; struct addrinfo *last = NULL; char *canonname = NULL; /* Now we definitely need the interface information. */ if (! check_pf_called) __check_pf (&seen_ipv4, &seen_ipv6, &in6ai, &in6ailen); /* If we have information about deprecated and temporary addresses sort the array now. */ if (in6ai != NULL) qsort (in6ai, in6ailen, sizeof (*in6ai), in6aicmp); int fd = -1; int af = AF_UNSPEC; for (i = 0, q = p; q != NULL; ++i, last = q, q = q->ai_next) { results[i].dest_addr = q; results[i].native = -1; order[i] = i; /* If we just looked up the address for a different protocol, reuse the result. */ if (last != NULL && last->ai_addrlen == q->ai_addrlen && memcmp (last->ai_addr, q->ai_addr, q->ai_addrlen) == 0) { memcpy (&results[i].source_addr, &results[i - 1].source_addr, results[i - 1].source_addr_len); results[i].source_addr_len = results[i - 1].source_addr_len; results[i].got_source_addr = results[i - 1].got_source_addr; results[i].source_addr_flags = results[i - 1].source_addr_flags; results[i].prefixlen = results[i - 1].prefixlen; results[i].index = results[i - 1].index; } else { results[i].got_source_addr = false; results[i].source_addr_flags = 0; results[i].prefixlen = 0; results[i].index = 0xffffffffu; /* We overwrite the type with SOCK_DGRAM since we do not want connect() to connect to the other side. If we cannot determine the source address remember this fact. */ if (fd == -1 || (af == AF_INET && q->ai_family == AF_INET6)) { if (fd != -1) close_retry: close_not_cancel_no_status (fd); af = q->ai_family; fd = __socket (af, SOCK_DGRAM, IPPROTO_IP); } else { /* Reset the connection. */ struct sockaddr sa = { .sa_family = AF_UNSPEC }; __connect (fd, &sa, sizeof (sa)); } socklen_t sl = sizeof (results[i].source_addr); if (fd != -1 && __connect (fd, q->ai_addr, q->ai_addrlen) == 0 && __getsockname (fd, (struct sockaddr *) &results[i].source_addr, &sl) == 0) { results[i].source_addr_len = sl; results[i].got_source_addr = true; if (in6ai != NULL) { /* See whether the source address is on the list of deprecated or temporary addresses. */ struct in6addrinfo tmp; if (q->ai_family == AF_INET && af == AF_INET) { struct sockaddr_in *sinp = (struct sockaddr_in *) &results[i].source_addr; tmp.addr[0] = 0; tmp.addr[1] = 0; tmp.addr[2] = htonl (0xffff); tmp.addr[3] = sinp->sin_addr.s_addr; } else { struct sockaddr_in6 *sin6p = (struct sockaddr_in6 *) &results[i].source_addr; memcpy (tmp.addr, &sin6p->sin6_addr, IN6ADDRSZ); } struct in6addrinfo *found = bsearch (&tmp, in6ai, in6ailen, sizeof (*in6ai), in6aicmp); if (found != NULL) { results[i].source_addr_flags = found->flags; results[i].prefixlen = found->prefixlen; results[i].index = found->index; } } if (q->ai_family == AF_INET && af == AF_INET6) { /* We have to convert the address. The socket is IPv6 and the request is for IPv4. */ struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &results[i].source_addr; struct sockaddr_in *sin = (struct sockaddr_in *) &results[i].source_addr; assert (IN6_IS_ADDR_V4MAPPED (sin6->sin6_addr.s6_addr32)); sin->sin_family = AF_INET; /* We do not have to initialize sin_port since this fields has the same position and size in the IPv6 structure. */ assert (offsetof (struct sockaddr_in, sin_port) == offsetof (struct sockaddr_in6, sin6_port)); assert (sizeof (sin->sin_port) == sizeof (sin6->sin6_port)); memcpy (&sin->sin_addr, &sin6->sin6_addr.s6_addr32[3], INADDRSZ); results[i].source_addr_len = sizeof (struct sockaddr_in); } } else if (errno == EAFNOSUPPORT && af == AF_INET6 && q->ai_family == AF_INET) /* This could mean IPv6 sockets are IPv6-only. */ goto close_retry; else /* Just make sure that if we have to process the same address again we do not copy any memory. */ results[i].source_addr_len = 0; } /* Remember the canonical name. */ if (q->ai_canonname != NULL) { assert (canonname == NULL); canonname = q->ai_canonname; q->ai_canonname = NULL; } } if (fd != -1) close_not_cancel_no_status (fd); /* We got all the source addresses we can get, now sort using the information. */ struct sort_result_combo src = { .results = results, .nresults = nresults }; if (__builtin_expect (gaiconf_reload_flag_ever_set, 0)) { __libc_lock_define_initialized (static, lock); __libc_lock_lock (lock); if (old_once && gaiconf_reload_flag) gaiconf_reload (); qsort_r (order, nresults, sizeof (order[0]), rfc3484_sort, &src); __libc_lock_unlock (lock); } else qsort_r (order, nresults, sizeof (order[0]), rfc3484_sort, &src); /* Queue the results up as they come out of sorting. */ q = p = results[order[0]].dest_addr; for (i = 1; i < nresults; ++i) q = q->ai_next = results[order[i]].dest_addr; q->ai_next = NULL; /* Fill in the canonical name into the new first entry. */ p->ai_canonname = canonname; } free (in6ai); if (p) { *pai = p; return 0; } return last_i ? -(last_i & GAIH_EAI) : EAI_NONAME; } libc_hidden_def (getaddrinfo) static_link_warning (getaddrinfo) void freeaddrinfo (struct addrinfo *ai) { struct addrinfo *p; while (ai != NULL) { p = ai; ai = ai->ai_next; free (p->ai_canonname); free (p); } } libc_hidden_def (freeaddrinfo)