/* The Inner Net License, Version 2.00 The author(s) grant permission for redistribution and use in source and binary forms, with or without modification, of the software and documentation provided that the following conditions are met: 0. If you receive a version of the software that is specifically labelled as not being for redistribution (check the version message and/or README), you are not permitted to redistribute that version of the software in any way or form. 1. All terms of the all other applicable copyrights and licenses must be followed. 2. Redistributions of source code must retain the authors' copyright notice(s), this list of conditions, and the following disclaimer. 3. Redistributions in binary form must reproduce the authors' copyright notice(s), this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution. 4. [The copyright holder has authorized the removal of this clause.] 5. Neither the name(s) of the author(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY ITS AUTHORS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. If these license terms cause you a real problem, contact the author. */ /* This software is Copyright 1996 by Craig Metz, All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBIDN extern int __idna_to_ascii_lz (const char *input, char **output, int flags); extern int __idna_to_unicode_lzlz (const char *input, char **output, int flags); # include #endif #define GAIH_OKIFUNSPEC 0x0100 #define GAIH_EAI ~(GAIH_OKIFUNSPEC) #ifndef UNIX_PATH_MAX #define UNIX_PATH_MAX 108 #endif struct gaih_service { const char *name; int num; }; struct gaih_servtuple { struct gaih_servtuple *next; int socktype; int protocol; int port; }; static const struct gaih_servtuple nullserv; struct gaih_addrtuple { struct gaih_addrtuple *next; int family; uint32_t addr[4]; uint32_t scopeid; }; struct gaih_typeproto { int socktype; int protocol; char name[4]; int protoflag; }; /* Values for `protoflag'. */ #define GAI_PROTO_NOSERVICE 1 #define GAI_PROTO_PROTOANY 2 static const struct gaih_typeproto gaih_inet_typeproto[] = { { 0, 0, "", 0 }, { SOCK_STREAM, IPPROTO_TCP, "tcp", 0 }, { SOCK_DGRAM, IPPROTO_UDP, "udp", 0 }, { SOCK_RAW, 0, "raw", GAI_PROTO_PROTOANY|GAI_PROTO_NOSERVICE }, { 0, 0, "", 0 } }; struct gaih { int family; int (*gaih)(const char *name, const struct gaih_service *service, const struct addrinfo *req, struct addrinfo **pai); }; static const struct addrinfo default_hints = { .ai_flags = AI_DEFAULT, .ai_family = PF_UNSPEC, .ai_socktype = 0, .ai_protocol = 0, .ai_addrlen = 0, .ai_addr = NULL, .ai_canonname = NULL, .ai_next = NULL }; #if 0 /* Using Unix sockets this way is a security risk. */ static int gaih_local (const char *name, const struct gaih_service *service, const struct addrinfo *req, struct addrinfo **pai) { struct utsname utsname; if ((name != NULL) && (req->ai_flags & AI_NUMERICHOST)) return GAIH_OKIFUNSPEC | -EAI_NONAME; if ((name != NULL) || (req->ai_flags & AI_CANONNAME)) if (uname (&utsname) < 0) return -EAI_SYSTEM; if (name != NULL) { if (strcmp(name, "localhost") && strcmp(name, "local") && strcmp(name, "unix") && strcmp(name, utsname.nodename)) return GAIH_OKIFUNSPEC | -EAI_NONAME; } if (req->ai_protocol || req->ai_socktype) { const struct gaih_typeproto *tp = gaih_inet_typeproto + 1; while (tp->name[0] && ((tp->protoflag & GAI_PROTO_NOSERVICE) != 0 || (req->ai_socktype != 0 && req->ai_socktype != tp->socktype) || (req->ai_protocol != 0 && !(tp->protoflag & GAI_PROTO_PROTOANY) && req->ai_protocol != tp->protocol))) ++tp; if (! tp->name[0]) { if (req->ai_socktype) return (GAIH_OKIFUNSPEC | -EAI_SOCKTYPE); else return (GAIH_OKIFUNSPEC | -EAI_SERVICE); } } *pai = malloc (sizeof (struct addrinfo) + sizeof (struct sockaddr_un) + ((req->ai_flags & AI_CANONNAME) ? (strlen(utsname.nodename) + 1): 0)); if (*pai == NULL) return -EAI_MEMORY; (*pai)->ai_next = NULL; (*pai)->ai_flags = req->ai_flags; (*pai)->ai_family = AF_LOCAL; (*pai)->ai_socktype = req->ai_socktype ? req->ai_socktype : SOCK_STREAM; (*pai)->ai_protocol = req->ai_protocol; (*pai)->ai_addrlen = sizeof (struct sockaddr_un); (*pai)->ai_addr = (void *) (*pai) + sizeof (struct addrinfo); #if SALEN ((struct sockaddr_un *) (*pai)->ai_addr)->sun_len = sizeof (struct sockaddr_un); #endif /* SALEN */ ((struct sockaddr_un *)(*pai)->ai_addr)->sun_family = AF_LOCAL; memset(((struct sockaddr_un *)(*pai)->ai_addr)->sun_path, 0, UNIX_PATH_MAX); if (service) { struct sockaddr_un *sunp = (struct sockaddr_un *) (*pai)->ai_addr; if (strchr (service->name, '/') != NULL) { if (strlen (service->name) >= sizeof (sunp->sun_path)) return GAIH_OKIFUNSPEC | -EAI_SERVICE; strcpy (sunp->sun_path, service->name); } else { if (strlen (P_tmpdir "/") + 1 + strlen (service->name) >= sizeof (sunp->sun_path)) return GAIH_OKIFUNSPEC | -EAI_SERVICE; __stpcpy (__stpcpy (sunp->sun_path, P_tmpdir "/"), service->name); } } else { /* This is a dangerous use of the interface since there is a time window between the test for the file and the actual creation (done by the caller) in which a file with the same name could be created. */ char *buf = ((struct sockaddr_un *) (*pai)->ai_addr)->sun_path; if (__builtin_expect (__path_search (buf, L_tmpnam, NULL, NULL, 0), 0) != 0 || __builtin_expect (__gen_tempname (buf, __GT_NOCREATE), 0) != 0) return -EAI_SYSTEM; } if (req->ai_flags & AI_CANONNAME) (*pai)->ai_canonname = strcpy ((char *) *pai + sizeof (struct addrinfo) + sizeof (struct sockaddr_un), utsname.nodename); else (*pai)->ai_canonname = NULL; return 0; } #endif /* 0 */ static int gaih_inet_serv (const char *servicename, const struct gaih_typeproto *tp, const struct addrinfo *req, struct gaih_servtuple *st) { struct servent *s; size_t tmpbuflen = 1024; struct servent ts; char *tmpbuf; int r; do { tmpbuf = __alloca (tmpbuflen); r = __getservbyname_r (servicename, tp->name, &ts, tmpbuf, tmpbuflen, &s); if (r != 0 || s == NULL) { if (r == ERANGE) tmpbuflen *= 2; else return GAIH_OKIFUNSPEC | -EAI_SERVICE; } } while (r); st->next = NULL; st->socktype = tp->socktype; st->protocol = ((tp->protoflag & GAI_PROTO_PROTOANY) ? req->ai_protocol : tp->protocol); st->port = s->s_port; return 0; } #define gethosts(_family, _type) \ { \ int i; \ int herrno; \ struct hostent th; \ no_data = 0; \ while (1) { \ rc = 0; \ status = DL_CALL_FCT (fct, (name, _family, &th, tmpbuf, \ tmpbuflen, &rc, &herrno)); \ if (rc != ERANGE || herrno != NETDB_INTERNAL) \ break; \ tmpbuf = extend_alloca (tmpbuf, tmpbuflen, 2 * tmpbuflen); \ } \ if (status == NSS_STATUS_SUCCESS && rc == 0) \ h = &th; \ else \ h = NULL; \ if (rc != 0) \ { \ if (herrno == NETDB_INTERNAL) \ { \ __set_h_errno (herrno); \ return -EAI_SYSTEM; \ } \ if (herrno == TRY_AGAIN) \ no_data = EAI_AGAIN; \ else \ no_data = herrno == NO_DATA; \ } \ else if (h != NULL) \ { \ for (i = 0; h->h_addr_list[i]; i++) \ { \ if (*pat == NULL) \ { \ *pat = __alloca (sizeof (struct gaih_addrtuple)); \ (*pat)->scopeid = 0; \ } \ uint32_t *addr = (*pat)->addr; \ (*pat)->next = NULL; \ if (_family == AF_INET && req->ai_family == AF_INET6) \ { \ (*pat)->family = AF_INET6; \ addr[3] = *(uint32_t *) h->h_addr_list[i]; \ addr[2] = htonl (0xffff); \ addr[1] = 0; \ addr[0] = 0; \ } \ else \ { \ (*pat)->family = _family; \ memcpy (addr, h->h_addr_list[i], sizeof(_type)); \ } \ pat = &((*pat)->next); \ } \ \ if (_family == AF_INET6 && i > 0) \ got_ipv6 = true; \ } \ } typedef enum nss_status (*nss_gethostbyname2_r) (const char *name, int af, struct hostent *host, char *buffer, size_t buflen, int *errnop, int *h_errnop); typedef enum nss_status (*nss_getcanonname_r) (const char *name, char *buffer, size_t buflen, char **result, int *errnop, int *h_errnop); extern service_user *__nss_hosts_database attribute_hidden; static int gaih_inet (const char *name, const struct gaih_service *service, const struct addrinfo *req, struct addrinfo **pai) { const struct gaih_typeproto *tp = gaih_inet_typeproto; struct gaih_servtuple *st = (struct gaih_servtuple *) &nullserv; struct gaih_addrtuple *at = NULL; int rc; bool got_ipv6 = false; const char *canon = NULL; if (req->ai_protocol || req->ai_socktype) { ++tp; while (tp->name[0] && ((req->ai_socktype != 0 && req->ai_socktype != tp->socktype) || (req->ai_protocol != 0 && !(tp->protoflag & GAI_PROTO_PROTOANY) && req->ai_protocol != tp->protocol))) ++tp; if (! tp->name[0]) { if (req->ai_socktype) return (GAIH_OKIFUNSPEC | -EAI_SOCKTYPE); else return (GAIH_OKIFUNSPEC | -EAI_SERVICE); } } if (service != NULL) { if ((tp->protoflag & GAI_PROTO_NOSERVICE) != 0) return (GAIH_OKIFUNSPEC | -EAI_SERVICE); if (service->num < 0) { if (tp->name[0]) { st = (struct gaih_servtuple *) __alloca (sizeof (struct gaih_servtuple)); if ((rc = gaih_inet_serv (service->name, tp, req, st))) return rc; } else { struct gaih_servtuple **pst = &st; for (tp++; tp->name[0]; tp++) { struct gaih_servtuple *newp; if ((tp->protoflag & GAI_PROTO_NOSERVICE) != 0) continue; if (req->ai_socktype != 0 && req->ai_socktype != tp->socktype) continue; if (req->ai_protocol != 0 && !(tp->protoflag & GAI_PROTO_PROTOANY) && req->ai_protocol != tp->protocol) continue; newp = (struct gaih_servtuple *) __alloca (sizeof (struct gaih_servtuple)); if ((rc = gaih_inet_serv (service->name, tp, req, newp))) { if (rc & GAIH_OKIFUNSPEC) continue; return rc; } *pst = newp; pst = &(newp->next); } if (st == (struct gaih_servtuple *) &nullserv) return (GAIH_OKIFUNSPEC | -EAI_SERVICE); } } else { st = __alloca (sizeof (struct gaih_servtuple)); st->next = NULL; st->socktype = tp->socktype; st->protocol = ((tp->protoflag & GAI_PROTO_PROTOANY) ? req->ai_protocol : tp->protocol); st->port = htons (service->num); } } else if (req->ai_socktype || req->ai_protocol) { st = __alloca (sizeof (struct gaih_servtuple)); st->next = NULL; st->socktype = tp->socktype; st->protocol = ((tp->protoflag & GAI_PROTO_PROTOANY) ? req->ai_protocol : tp->protocol); st->port = 0; } else { /* Neither socket type nor protocol is set. Return all socket types we know about. */ struct gaih_servtuple **lastp = &st; for (++tp; tp->name[0]; ++tp) { struct gaih_servtuple *newp; newp = __alloca (sizeof (struct gaih_servtuple)); newp->next = NULL; newp->socktype = tp->socktype; newp->protocol = tp->protocol; newp->port = 0; *lastp = newp; lastp = &newp->next; } } if (name != NULL) { at = __alloca (sizeof (struct gaih_addrtuple)); at->family = AF_UNSPEC; at->scopeid = 0; at->next = NULL; #ifdef HAVE_LIBIDN if (req->ai_flags & AI_IDN) { int idn_flags = 0; if (req->ai_flags & AI_IDN_ALLOW_UNASSIGNED) idn_flags |= IDNA_ALLOW_UNASSIGNED; if (req->ai_flags & AI_IDN_USE_STD3_ASCII_RULES) idn_flags |= IDNA_USE_STD3_ASCII_RULES; char *p = NULL; rc = __idna_to_ascii_lz (name, &p, idn_flags); if (rc != IDNA_SUCCESS) { if (rc == IDNA_MALLOC_ERROR) return -EAI_MEMORY; if (rc == IDNA_DLOPEN_ERROR) return -EAI_SYSTEM; return -EAI_IDN_ENCODE; } /* In case the output string is the same as the input string no new string has been allocated. */ if (p != name) { name = strdupa (p); free (p); } } #endif if (__inet_aton (name, (struct in_addr *) at->addr) != 0) { if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET) at->family = AF_INET; else if (req->ai_family == AF_INET6 && req->ai_flags & AI_V4MAPPED) { at->addr[3] = at->addr[0]; at->addr[2] = htonl (0xffff); at->addr[1] = 0; at->addr[0] = 0; at->family = AF_INET6; } else return -EAI_ADDRFAMILY; } if (at->family == AF_UNSPEC) { char *namebuf = strdupa (name); char *scope_delim; scope_delim = strchr (namebuf, SCOPE_DELIMITER); if (scope_delim != NULL) *scope_delim = '\0'; if (inet_pton (AF_INET6, namebuf, at->addr) > 0) { if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET6) at->family = AF_INET6; else if (req->ai_family == AF_INET && IN6_IS_ADDR_V4MAPPED (at->addr)) { at->addr[0] = at->addr[3]; at->family = AF_INET; } else return -EAI_ADDRFAMILY; if (scope_delim != NULL) { int try_numericscope = 0; if (IN6_IS_ADDR_LINKLOCAL (at->addr) || IN6_IS_ADDR_MC_LINKLOCAL (at->addr)) { at->scopeid = if_nametoindex (scope_delim + 1); if (at->scopeid == 0) try_numericscope = 1; } else try_numericscope = 1; if (try_numericscope != 0) { char *end; assert (sizeof (uint32_t) <= sizeof (unsigned long)); at->scopeid = (uint32_t) strtoul (scope_delim + 1, &end, 10); if (*end != '\0') return GAIH_OKIFUNSPEC | -EAI_NONAME; } } } } if (at->family == AF_UNSPEC && (req->ai_flags & AI_NUMERICHOST) == 0) { struct hostent *h; struct gaih_addrtuple **pat = &at; int no_data = 0; int no_inet6_data = 0; service_user *nip = NULL; enum nss_status inet6_status = NSS_STATUS_UNAVAIL; enum nss_status status = NSS_STATUS_UNAVAIL; int no_more; nss_gethostbyname2_r fct; int old_res_options; size_t tmpbuflen = 512; char *tmpbuf = alloca (tmpbuflen); if (__nss_hosts_database != NULL) { no_more = 0; nip = __nss_hosts_database; } else no_more = __nss_database_lookup ("hosts", NULL, "dns [!UNAVAIL=return] files", &nip); if (__res_maybe_init (&_res, 0) == -1) no_more = 1; /* If we are looking for both IPv4 and IPv6 address we don't want the lookup functions to automatically promote IPv4 addresses to IPv6 addresses. Currently this is decided by setting the RES_USE_INET6 bit in _res.options. */ old_res_options = _res.options; _res.options &= ~RES_USE_INET6; while (!no_more) { fct = __nss_lookup_function (nip, "gethostbyname2_r"); if (fct != NULL) { if (req->ai_family == AF_INET6 || req->ai_family == AF_UNSPEC) { gethosts (AF_INET6, struct in6_addr); no_inet6_data = no_data; inet6_status = status; } if (req->ai_family == AF_INET || req->ai_family == AF_UNSPEC || (req->ai_family == AF_INET6 && (req->ai_flags & AI_V4MAPPED) /* Avoid generating the mapped addresses if we know we are not going to need them. */ && ((req->ai_flags & AI_ALL) || !got_ipv6))) { gethosts (AF_INET, struct in_addr); if (req->ai_family == AF_INET) { no_inet6_data = no_data; inet6_status = status; } } /* If we found one address for AF_INET or AF_INET6, don't continue the search. */ if (inet6_status == NSS_STATUS_SUCCESS || status == NSS_STATUS_SUCCESS) { /* If we need the canonical name, get it from the same service as the result. */ nss_getcanonname_r cfct; int herrno; cfct = __nss_lookup_function (nip, "getcanonname_r"); if (cfct != NULL) { const size_t max_fqdn_len = 256; char *buf = alloca (max_fqdn_len); char *s; if (DL_CALL_FCT (cfct, (name, buf, max_fqdn_len, &s, &rc, &herrno)) == NSS_STATUS_SUCCESS) canon = s; else /* Set to name now to avoid using gethostbyaddr. */ canon = name; } break; } /* We can have different states for AF_INET and AF_INET6. Try to find a useful one for both. */ if (inet6_status == NSS_STATUS_TRYAGAIN) status = NSS_STATUS_TRYAGAIN; else if (status == NSS_STATUS_UNAVAIL && inet6_status != NSS_STATUS_UNAVAIL) status = inet6_status; } if (nss_next_action (nip, status) == NSS_ACTION_RETURN) break; if (nip->next == NULL) no_more = -1; else nip = nip->next; } _res.options = old_res_options; if (no_data != 0 && no_inet6_data != 0) { /* If both requests timed out report this. */ if (no_data == EAI_AGAIN && no_inet6_data == EAI_AGAIN) return -EAI_AGAIN; /* We made requests but they turned out no data. The name is known, though. */ return (GAIH_OKIFUNSPEC | -EAI_NODATA); } } if (at->family == AF_UNSPEC) return (GAIH_OKIFUNSPEC | -EAI_NONAME); } else { struct gaih_addrtuple *atr; atr = at = __alloca (sizeof (struct gaih_addrtuple)); memset (at, '\0', sizeof (struct gaih_addrtuple)); if (req->ai_family == AF_UNSPEC) { at->next = __alloca (sizeof (struct gaih_addrtuple)); memset (at->next, '\0', sizeof (struct gaih_addrtuple)); } if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET6) { at->family = AF_INET6; if ((req->ai_flags & AI_PASSIVE) == 0) memcpy (at->addr, &in6addr_loopback, sizeof (struct in6_addr)); atr = at->next; } if (req->ai_family == AF_UNSPEC || req->ai_family == AF_INET) { atr->family = AF_INET; if ((req->ai_flags & AI_PASSIVE) == 0) atr->addr[0] = htonl (INADDR_LOOPBACK); } } if (pai == NULL) return 0; { struct gaih_servtuple *st2; struct gaih_addrtuple *at2 = at; size_t socklen; sa_family_t family; /* buffer is the size of an unformatted IPv6 address in printable format. */ while (at2 != NULL) { /* Only the first entry gets the canonical name. */ if (at2 == at && (req->ai_flags & AI_CANONNAME) != 0) { if (canon == NULL) { struct hostent *h = NULL; int herrno; struct hostent th; size_t tmpbuflen = 512; char *tmpbuf = NULL; do { tmpbuf = extend_alloca (tmpbuf, tmpbuflen, tmpbuflen * 2); rc = __gethostbyaddr_r (at2->addr, ((at2->family == AF_INET6) ? sizeof (struct in6_addr) : sizeof (struct in_addr)), at2->family, &th, tmpbuf, tmpbuflen, &h, &herrno); } while (rc == ERANGE && herrno == NETDB_INTERNAL); if (rc != 0 && herrno == NETDB_INTERNAL) { __set_h_errno (herrno); return -EAI_SYSTEM; } if (h != NULL) canon = h->h_name; else { assert (name != NULL); /* If the canonical name cannot be determined, use the passed in string. */ canon = name; } } #ifdef HAVE_LIBIDN if (req->ai_flags & AI_CANONIDN) { int idn_flags = 0; if (req->ai_flags & AI_IDN_ALLOW_UNASSIGNED) idn_flags |= IDNA_ALLOW_UNASSIGNED; if (req->ai_flags & AI_IDN_USE_STD3_ASCII_RULES) idn_flags |= IDNA_USE_STD3_ASCII_RULES; char *out; int rc = __idna_to_unicode_lzlz (canon, &out, idn_flags); if (rc != IDNA_SUCCESS) { if (rc == IDNA_MALLOC_ERROR) return -EAI_MEMORY; if (rc == IDNA_DLOPEN_ERROR) return -EAI_SYSTEM; return -EAI_IDN_ENCODE; } /* In case the output string is the same as the input string no new string has been allocated. Otherwise make a copy. */ if (out == canon) goto make_copy; } else #endif { #ifdef HAVE_LIBIDN make_copy: #endif canon = strdup (canon); if (canon == NULL) return -EAI_MEMORY; } } if (at2->family == AF_INET6) { family = AF_INET6; socklen = sizeof (struct sockaddr_in6); /* If we looked up IPv4 mapped address discard them here if the caller isn't interested in all address and we have found at least one IPv6 address. */ if (got_ipv6 && (req->ai_flags & (AI_V4MAPPED|AI_ALL)) == AI_V4MAPPED && IN6_IS_ADDR_V4MAPPED (at2->addr)) goto ignore; } else { family = AF_INET; socklen = sizeof (struct sockaddr_in); } for (st2 = st; st2 != NULL; st2 = st2->next) { *pai = malloc (sizeof (struct addrinfo) + socklen); if (*pai == NULL) return -EAI_MEMORY; (*pai)->ai_flags = req->ai_flags; (*pai)->ai_family = family; (*pai)->ai_socktype = st2->socktype; (*pai)->ai_protocol = st2->protocol; (*pai)->ai_addrlen = socklen; (*pai)->ai_addr = (void *) (*pai + 1); /* We only add the canonical name once. */ (*pai)->ai_canonname = canon; canon = NULL; #if SALEN (*pai)->ai_addr->sa_len = socklen; #endif /* SALEN */ (*pai)->ai_addr->sa_family = family; if (family == AF_INET6) { struct sockaddr_in6 *sin6p = (struct sockaddr_in6 *) (*pai)->ai_addr; sin6p->sin6_port = st2->port; sin6p->sin6_flowinfo = 0; memcpy (&sin6p->sin6_addr, at2->addr, sizeof (struct in6_addr)); sin6p->sin6_scope_id = at2->scopeid; } else { struct sockaddr_in *sinp = (struct sockaddr_in *) (*pai)->ai_addr; sinp->sin_port = st2->port; memcpy (&sinp->sin_addr, at2->addr, sizeof (struct in_addr)); memset (sinp->sin_zero, '\0', sizeof (sinp->sin_zero)); } (*pai)->ai_next = NULL; pai = &((*pai)->ai_next); } ignore: at2 = at2->next; } } return 0; } static struct gaih gaih[] = { { PF_INET6, gaih_inet }, { PF_INET, gaih_inet }, #if 0 { PF_LOCAL, gaih_local }, #endif { PF_UNSPEC, NULL } }; struct sort_result { struct addrinfo *dest_addr; struct sockaddr_storage source_addr; bool got_source_addr; }; static int get_scope (const struct sockaddr_storage *ss) { int scope; if (ss->ss_family == PF_INET6) { const struct sockaddr_in6 *in6 = (const struct sockaddr_in6 *) ss; if (! IN6_IS_ADDR_MULTICAST (&in6->sin6_addr)) { if (IN6_IS_ADDR_LINKLOCAL (&in6->sin6_addr)) scope = 2; else if (IN6_IS_ADDR_SITELOCAL (&in6->sin6_addr)) scope = 5; else /* XXX Is this the correct default behavior? */ scope = 14; } else scope = in6->sin6_addr.s6_addr[1] & 0xf; } else if (ss->ss_family == PF_INET) { const struct sockaddr_in *in = (const struct sockaddr_in *) ss; const uint8_t *addr = (const uint8_t *) &in->sin_addr; /* RFC 3484 specifies how to map IPv6 addresses to scopes. 169.254/16 and 127/8 are link-local. */ if ((addr[0] == 169 && addr[1] == 254) || addr[0] == 127) scope = 2; else if (addr[0] == 10 || (addr[0] == 172 && addr[1] == 16) || (addr[0] == 192 && addr[1] == 168)) scope = 5; else scope = 14; } else /* XXX What is a good default? */ scope = 15; return scope; } /* XXX The system administrator should be able to install other tables. We need to make this configurable. The problem is that the kernel is also involved since it needs the same table. */ static const struct prefixlist { struct in6_addr prefix; unsigned int bits; int val; } default_labels[] = { /* See RFC 3484 for the details. */ { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001 } } }, 128, 0 }, { { .in6_u = { .u6_addr16 = { 0x2002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 16, 2 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 96, 3 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000 } } }, 96, 4 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 0, 1 } }; static const struct prefixlist default_precedence[] = { /* See RFC 3484 for the details. */ { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001 } } }, 128, 50 }, { { .in6_u = { .u6_addr16 = { 0x2002, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 16, 30 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 96, 20 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000 } } }, 96, 10 }, { { .in6_u = { .u6_addr16 = { 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 } } }, 0, 40 } }; static int match_prefix (const struct sockaddr_storage *ss, const struct prefixlist *list, int default_val) { int idx; struct sockaddr_in6 in6_mem; const struct sockaddr_in6 *in6; if (ss->ss_family == PF_INET6) in6 = (const struct sockaddr_in6 *) ss; else if (ss->ss_family == PF_INET) { const struct sockaddr_in *in = (const struct sockaddr_in *) ss; /* Convert to IPv6 address. */ in6_mem.sin6_family = PF_INET6; in6_mem.sin6_port = in->sin_port; in6_mem.sin6_flowinfo = 0; if (in->sin_addr.s_addr == htonl (0x7f000001)) in6_mem.sin6_addr = (struct in6_addr) IN6ADDR_LOOPBACK_INIT; else { /* Construct a V4-to-6 mapped address. */ memset (&in6_mem.sin6_addr, '\0', sizeof (in6_mem.sin6_addr)); in6_mem.sin6_addr.s6_addr16[5] = 0xffff; in6_mem.sin6_addr.s6_addr32[3] = in->sin_addr.s_addr; in6_mem.sin6_scope_id = 0; } in6 = &in6_mem; } else return default_val; for (idx = 0; ; ++idx) { unsigned int bits = list[idx].bits; uint8_t *mask = list[idx].prefix.s6_addr; uint8_t *val = in6->sin6_addr.s6_addr; while (bits > 8) { if (*mask != *val) break; ++mask; ++val; bits -= 8; } if (bits < 8) { if ((*mask & (0xff00 >> bits)) == (*val & (0xff00 >> bits))) /* Match! */ break; } } return list[idx].val; } static int get_label (const struct sockaddr_storage *ss) { /* XXX What is a good default value? */ return match_prefix (ss, default_labels, INT_MAX); } static int get_precedence (const struct sockaddr_storage *ss) { /* XXX What is a good default value? */ return match_prefix (ss, default_precedence, 0); } static int rfc3484_sort (const void *p1, const void *p2) { const struct sort_result *a1 = (const struct sort_result *) p1; const struct sort_result *a2 = (const struct sort_result *) p2; /* Rule 1: Avoid unusable destinations. We have the got_source_addr flag set if the destination is reachable. */ if (a1->got_source_addr && ! a2->got_source_addr) return -1; if (! a1->got_source_addr && a2->got_source_addr) return 1; /* Rule 2: Prefer matching scope. Only interesting if both destination addresses are IPv6. */ int a1_dst_scope = get_scope ((struct sockaddr_storage *) a1->dest_addr->ai_addr); int a2_dst_scope = get_scope ((struct sockaddr_storage *) a2->dest_addr->ai_addr); if (a1->got_source_addr) { int a1_src_scope = get_scope (&a1->source_addr); int a2_src_scope = get_scope (&a2->source_addr); if (a1_dst_scope == a1_src_scope && a2_dst_scope != a2_src_scope) return -1; if (a1_dst_scope != a1_src_scope && a2_dst_scope == a2_src_scope) return 1; } /* Rule 3: Avoid deprecated addresses. That's something only the kernel could decide. */ /* Rule 4: Prefer home addresses. Another thing only the kernel can decide. */ /* Rule 5: Prefer matching label. */ if (a1->got_source_addr) { int a1_dst_label = get_label ((struct sockaddr_storage *) a1->dest_addr->ai_addr); int a1_src_label = get_label (&a1->source_addr); int a2_dst_label = get_label ((struct sockaddr_storage *) a2->dest_addr->ai_addr); int a2_src_label = get_label (&a2->source_addr); if (a1_dst_label == a1_src_label && a2_dst_label != a2_src_label) return -1; if (a1_dst_label != a1_src_label && a2_dst_label == a2_src_label) return 1; } /* Rule 6: Prefer higher precedence. */ int a1_prec = get_precedence ((struct sockaddr_storage *) a1->dest_addr->ai_addr); int a2_prec = get_precedence ((struct sockaddr_storage *) a2->dest_addr->ai_addr); if (a1_prec > a2_prec) return -1; if (a1_prec < a2_prec) return 1; /* Rule 7: Prefer native transport. XXX How to recognize tunnels? */ /* Rule 8: Prefer smaller scope. */ if (a1_dst_scope < a2_dst_scope) return -1; if (a1_dst_scope > a2_dst_scope) return 1; /* Rule 9: Use longest matching prefix. */ if (a1->got_source_addr && a1->dest_addr->ai_family == a2->dest_addr->ai_family) { int bit1 = 0; int bit2 = 0; if (a1->dest_addr->ai_family == PF_INET) { assert (a1->source_addr.ss_family == PF_INET); assert (a2->source_addr.ss_family == PF_INET); struct sockaddr_in *in1_dst; struct sockaddr_in *in1_src; struct sockaddr_in *in2_dst; struct sockaddr_in *in2_src; in1_dst = (struct sockaddr_in *) a1->dest_addr->ai_addr; in1_src = (struct sockaddr_in *) &a1->source_addr; in2_dst = (struct sockaddr_in *) a2->dest_addr->ai_addr; in2_src = (struct sockaddr_in *) &a2->source_addr; bit1 = ffs (in1_dst->sin_addr.s_addr ^ in1_src->sin_addr.s_addr); bit2 = ffs (in2_dst->sin_addr.s_addr ^ in2_src->sin_addr.s_addr); } else if (a1->dest_addr->ai_family == PF_INET6) { assert (a1->source_addr.ss_family == PF_INET6); assert (a2->source_addr.ss_family == PF_INET6); struct sockaddr_in6 *in1_dst; struct sockaddr_in6 *in1_src; struct sockaddr_in6 *in2_dst; struct sockaddr_in6 *in2_src; in1_dst = (struct sockaddr_in6 *) a1->dest_addr->ai_addr; in1_src = (struct sockaddr_in6 *) &a1->source_addr; in2_dst = (struct sockaddr_in6 *) a2->dest_addr->ai_addr; in2_src = (struct sockaddr_in6 *) &a2->source_addr; int i; for (i = 0; i < 4; ++i) if (in1_dst->sin6_addr.s6_addr32[i] != in1_src->sin6_addr.s6_addr32[i] || (in2_dst->sin6_addr.s6_addr32[i] != in2_src->sin6_addr.s6_addr32[i])) break; if (i < 4) { bit1 = ffs (in1_dst->sin6_addr.s6_addr32[i] ^ in1_src->sin6_addr.s6_addr32[i]); bit2 = ffs (in2_dst->sin6_addr.s6_addr32[i] ^ in2_src->sin6_addr.s6_addr32[i]); } } if (bit1 > bit2) return -1; if (bit1 < bit2) return 1; } /* Rule 10: Otherwise, leave the order unchanged. */ return 0; } int getaddrinfo (const char *name, const char *service, const struct addrinfo *hints, struct addrinfo **pai) { int i = 0, j = 0, last_i = 0; int nresults = 0; struct addrinfo *p = NULL, **end; struct gaih *g = gaih, *pg = NULL; struct gaih_service gaih_service, *pservice; struct addrinfo local_hints; if (name != NULL && name[0] == '*' && name[1] == 0) name = NULL; if (service != NULL && service[0] == '*' && service[1] == 0) service = NULL; if (name == NULL && service == NULL) return EAI_NONAME; if (hints == NULL) hints = &default_hints; if (hints->ai_flags & ~(AI_PASSIVE|AI_CANONNAME|AI_NUMERICHOST|AI_ADDRCONFIG|AI_V4MAPPED #ifdef HAVE_LIBIDN |AI_IDN|AI_CANONIDN|AI_IDN_ALLOW_UNASSIGNED |AI_IDN_USE_STD3_ASCII_RULES #endif |AI_NUMERICSERV|AI_ALL)) return EAI_BADFLAGS; if ((hints->ai_flags & AI_CANONNAME) && name == NULL) return EAI_BADFLAGS; if (hints->ai_flags & AI_ADDRCONFIG) { /* Determine whether we have IPv4 or IPv6 interfaces or both. We cannot cache the results since new interfaces could be added at any time. */ bool seen_ipv4; bool seen_ipv6; __check_pf (&seen_ipv4, &seen_ipv6); /* Now make a decision on what we return, if anything. */ if (hints->ai_family == PF_UNSPEC && (seen_ipv4 || seen_ipv6)) { /* If we haven't seen both IPv4 and IPv6 interfaces we can narrow down the search. */ if (! seen_ipv4 || ! seen_ipv6) { local_hints = *hints; local_hints.ai_family = seen_ipv4 ? PF_INET : PF_INET6; hints = &local_hints; } } else if ((hints->ai_family == PF_INET && ! seen_ipv4) || (hints->ai_family == PF_INET6 && ! seen_ipv6)) /* We cannot possibly return a valid answer. */ return EAI_NONAME; } if (service && service[0]) { char *c; gaih_service.name = service; gaih_service.num = strtoul (gaih_service.name, &c, 10); if (*c != '\0') { if (hints->ai_flags & AI_NUMERICSERV) return EAI_NONAME; gaih_service.num = -1; } else /* Can't specify a numerical socket unless a protocol family was given. */ if (hints->ai_socktype == 0 && hints->ai_protocol == 0) return EAI_SERVICE; pservice = &gaih_service; } else pservice = NULL; if (pai) end = &p; else end = NULL; while (g->gaih) { if (hints->ai_family == g->family || hints->ai_family == AF_UNSPEC) { j++; if (pg == NULL || pg->gaih != g->gaih) { pg = g; i = g->gaih (name, pservice, hints, end); if (i != 0) { /* EAI_NODATA is a more specific result as it says that we found a result but it is not usable. */ if (last_i != (GAIH_OKIFUNSPEC | -EAI_NODATA)) last_i = i; if (hints->ai_family == AF_UNSPEC && (i & GAIH_OKIFUNSPEC)) { ++g; continue; } freeaddrinfo (p); return -(i & GAIH_EAI); } if (end) while (*end) { end = &((*end)->ai_next); ++nresults; } } } ++g; } if (j == 0) return EAI_FAMILY; if (nresults > 1) { /* Sort results according to RFC 3484. */ struct sort_result results[nresults]; struct addrinfo *q; char *canonname = NULL; for (i = 0, q = p; q != NULL; ++i, q = q->ai_next) { results[i].dest_addr = q; results[i].got_source_addr = false; /* We overwrite the type with SOCK_DGRAM since we do not want connect() to connect to the other side. If we cannot determine the source address remember this fact. */ int fd = __socket (q->ai_family, SOCK_DGRAM, IPPROTO_IP); if (fd != -1) { socklen_t sl = sizeof (results[i].source_addr); if (__connect (fd, q->ai_addr, q->ai_addrlen) == 0 && __getsockname (fd, (struct sockaddr *) &results[i].source_addr, &sl) == 0) results[i].got_source_addr = true; close_not_cancel_no_status (fd); } /* Remember the canonical name. */ if (q->ai_canonname != NULL) { assert (canonname == NULL); canonname = q->ai_canonname; q->ai_canonname = NULL; } } /* We got all the source addresses we can get, now sort using the information. */ qsort (results, nresults, sizeof (results[0]), rfc3484_sort); /* Queue the results up as they come out of sorting. */ q = p = results[0].dest_addr; for (i = 1; i < nresults; ++i) q = q->ai_next = results[i].dest_addr; q->ai_next = NULL; /* Fill in the canonical name into the new first entry. */ p->ai_canonname = canonname; } if (p) { *pai = p; return 0; } if (pai == NULL && last_i == 0) return 0; return last_i ? -(last_i & GAIH_EAI) : EAI_NONAME; } libc_hidden_def (getaddrinfo) static_link_warning (getaddrinfo) void freeaddrinfo (struct addrinfo *ai) { struct addrinfo *p; while (ai != NULL) { p = ai; ai = ai->ai_next; free (p->ai_canonname); free (p); } } libc_hidden_def (freeaddrinfo)