/* Definitions of inline math functions implemented by the m68881/2. Copyright (C) 1991, 92, 93, 94, 96, 97 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef __GNUC__ #include #ifdef __LIBC_M81_MATH_INLINES /* This is used when defining the functions themselves. Define them with __ names, and with `static inline' instead of `extern inline' so the bodies will always be used, never an external function call. */ #define __m81_u(x) __CONCAT(__,x) #define __m81_inline static __inline #else #define __m81_u(x) x #define __m81_inline extern __inline #define __M81_MATH_INLINES 1 #endif /* Define a const math function. */ #define __m81_defun(rettype, func, args) \ __m81_inline rettype __attribute__((__const__)) \ __m81_u(func) args /* Define the three variants of a math function that has a direct implementation in the m68k fpu. FUNC is the name for C (which will be suffixed with f and l for the float and long double version, resp). OP is the name of the fpu operation (without leading f). */ #if defined __USE_MISC || defined __USE_ISOC9X #define __inline_mathop(func, op) \ __inline_mathop1(double, func, op) \ __inline_mathop1(float, __CONCAT(func,f), op) \ __inline_mathop1(long double, __CONCAT(func,l), op) #else #define __inline_mathop(func, op) \ __inline_mathop1(double, func, op) #endif #define __inline_mathop1(float_type,func, op) \ __m81_defun (float_type, func, (float_type __mathop_x)) \ { \ float_type __result; \ __asm("f" __STRING(op) "%.x %1, %0" : "=f" (__result) : "f" (__mathop_x));\ return __result; \ } #ifdef __LIBC_M81_MATH_INLINES /* ieee style elementary functions */ /* These are internal to the implementation of libm. */ __inline_mathop(__ieee754_acos, acos) __inline_mathop(__ieee754_asin, asin) __inline_mathop(__ieee754_cosh, cosh) __inline_mathop(__ieee754_sinh, sinh) __inline_mathop(__ieee754_exp, etox) __inline_mathop(__ieee754_log10, log10) __inline_mathop(__ieee754_log, logn) __inline_mathop(__ieee754_sqrt, sqrt) __inline_mathop(__ieee754_atanh, atanh) #endif __inline_mathop(__atan, atan) __inline_mathop(__cos, cos) __inline_mathop(__sin, sin) __inline_mathop(__tan, tan) __inline_mathop(__tanh, tanh) __inline_mathop(__fabs, abs) __inline_mathop(__rint, int) __inline_mathop(__expm1, etoxm1) __inline_mathop(__log1p, lognp1) __inline_mathop(__significand, getman) __inline_mathop(__log2, log2) __inline_mathop(__exp2, twotox) __inline_mathop(__trunc, intrz) #if !defined __NO_MATH_INLINES && defined __OPTIMIZE__ __inline_mathop(atan, atan) __inline_mathop(cos, cos) __inline_mathop(sin, sin) __inline_mathop(tan, tan) __inline_mathop(tanh, tanh) #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC9X __inline_mathop(rint, int) __inline_mathop(expm1, etoxm1) __inline_mathop(log1p, lognp1) #endif #ifdef __USE_MISC __inline_mathop(significand, getman) #endif #ifdef __USE_ISOC9X __inline_mathop(log2, log2) __inline_mathop(exp2, twotox) __inline_mathop(trunc, intrz) #endif #endif /* !__NO_MATH_INLINES && __OPTIMIZE__ */ /* This macro contains the definition for the rest of the inline functions, using __FLOAT_TYPE as the domain type and __S as the suffix for the function names. */ #ifdef __LIBC_M81_MATH_INLINES /* Internally used functions. */ #define __internal_inline_functions(float_type, s) \ __m81_defun (float_type, __CONCAT(__ieee754_remainder,s), \ (float_type __x, float_type __y)) \ { \ float_type __result; \ __asm("frem%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \ return __result; \ } \ \ __m81_defun (float_type, __CONCAT(__ieee754_fmod,s), \ (float_type __x, float_type __y)) \ { \ float_type __result; \ __asm("fmod%.x %1, %0" : "=f" (__result) : "f" (__y), "0" (__x)); \ return __result; \ } \ \ __m81_defun (float_type, __CONCAT(__ieee754_scalb,s), \ (float_type __x, float_type __n)) \ { \ float_type __result; \ __asm ("fscale%.x %1, %0" : "=f" (__result) : "f" (__n), "0" (__x)); \ return __result; \ } __internal_inline_functions (double,) __internal_inline_functions (float,f) __internal_inline_functions (long double,l) #undef __internal_inline_functions #endif /* __LIBC_M81_MATH_INLINES */ /* The rest of the functions are available to the user. */ #define __inline_functions(float_type, s) \ __m81_inline float_type \ __m81_u(__CONCAT(__frexp,s))(float_type __value, int *__expptr) \ { \ float_type __mantissa, __exponent; \ int __iexponent; \ if (__value == 0.0) \ { \ *__expptr = 0; \ return __value; \ } \ __asm("fgetexp%.x %1, %0" : "=f" (__exponent) : "f" (__value)); \ __iexponent = (int) __exponent + 1; \ *__expptr = __iexponent; \ __asm("fscale%.l %2, %0" : "=f" (__mantissa) \ : "0" (__value), "dmi" (-__iexponent)); \ return __mantissa; \ } \ \ __m81_defun (float_type, __CONCAT(__floor,s), (float_type __x)) \ { \ float_type __result; \ unsigned long int __ctrl_reg; \ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \ /* Set rounding towards negative infinity. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" ((__ctrl_reg & ~0x10) | 0x20)); \ /* Convert X to an integer, using -Inf rounding. */ \ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \ /* Restore the previous rounding mode. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg)); \ return __result; \ } \ \ __m81_defun (float_type, __CONCAT(__ceil,s), (float_type __x)) \ { \ float_type __result; \ unsigned long int __ctrl_reg; \ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \ /* Set rounding towards positive infinity. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg | 0x30)); \ /* Convert X to an integer, using +Inf rounding. */ \ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \ /* Restore the previous rounding mode. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg)); \ return __result; \ } \ \ __m81_defun (int, __CONCAT(__isinf,s), (float_type __value)) \ { \ /* There is no branch-condition for infinity, \ so we must extract and examine the condition codes manually. */ \ unsigned long int __fpsr; \ __asm("ftst%.x %1\n" \ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \ return (__fpsr & (2 << 24)) ? (__fpsr & (8 << 24) ? -1 : 1) : 0; \ } \ \ __m81_defun (int, __CONCAT(__isnan,s), (float_type __value)) \ { \ char __result; \ __asm("ftst%.x %1\n" \ "fsun %0" : "=dm" (__result) : "f" (__value)); \ return __result; \ } \ \ __m81_defun (int, __CONCAT(__finite,s), (float_type __value)) \ { \ /* There is no branch-condition for infinity, so we must extract and \ examine the condition codes manually. */ \ unsigned long int __fpsr; \ __asm ("ftst%.x %1\n" \ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \ return (__fpsr & (3 << 24)) == 0; \ } \ \ __m81_defun (int, __CONCAT(__signbit,s), (float_type __value)) \ { \ /* There is no branch-condition for the sign bit, so we must extract \ and examine the condition codes manually. */ \ unsigned long int __fpsr; \ __asm ("ftst%.x %1\n" \ "fmove%.l %/fpsr, %0" : "=dm" (__fpsr) : "f" (__value)); \ return (__fpsr >> 27) & 1; \ } \ \ __m81_defun (int, __CONCAT(__ilogb,s), (float_type __x)) \ { \ float_type __result; \ if (__x == 0.0) \ return 0x80000001; \ __asm("fgetexp%.x %1, %0" : "=f" (__result) : "f" (__x)); \ return (int) __result; \ } \ \ __m81_defun (float_type, __CONCAT(__scalbn,s), (float_type __x, int __n)) \ { \ float_type __result; \ __asm ("fscale%.l %1, %0" : "=f" (__result) : "dmi" (__n), "0" (__x)); \ return __result; \ } \ \ __m81_defun (float_type, __CONCAT(__nearbyint,s), (float_type __x)) \ { \ float_type __result; \ unsigned long int __ctrl_reg; \ __asm __volatile__ ("fmove%.l %!, %0" : "=dm" (__ctrl_reg)); \ /* Temporarily disable the inexact exception. */ \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg & ~0x200)); \ __asm __volatile__ ("fint%.x %1, %0" : "=f" (__result) : "f" (__x)); \ __asm __volatile__ ("fmove%.l %0, %!" : /* No outputs. */ \ : "dmi" (__ctrl_reg)); \ return __result; \ } /* This defines the three variants of the inline functions. */ __inline_functions (double,) __inline_functions (float,f) __inline_functions (long double,l) #undef __inline_functions __m81_defun (long int, __rinttol, (long double __x)) { long int __result; __asm ("fmove%.l %1, %0" : "=dm" (__result) : "f" (__x)); return __result; } #if !defined __NO_MATH_INLINES && defined __OPTIMIZE__ /* Define inline versions of the user visible functions. */ #define __inline_forward_c(rettype, name, args1, args2) \ extern __inline rettype __attribute__((__const__)) \ name args1 \ { \ return __CONCAT(__,name) args2; \ } #define __inline_forward(rettype, name, args1, args2) \ extern __inline rettype name args1 \ { \ return __CONCAT(__,name) args2; \ } __inline_forward(double,frexp, (double __value, int *__expptr), (__value, __expptr)) __inline_forward_c(double,floor, (double __x), (__x)) __inline_forward_c(double,ceil, (double __x), (__x)) #ifdef __USE_MISC __inline_forward_c(int,isinf, (double __value), (__value)) __inline_forward_c(int,finite, (double __value), (__value)) __inline_forward_c(double,scalbn, (double __x, int __n), (__x, __n)) #endif #if defined __USE_MISC || defined __USE_XOPEN #ifndef __USE_ISOC9X /* Conflict with macro of same name. */ __inline_forward_c(int,isnan, (double __value), (__value)) #endif __inline_forward_c(int,ilogb, (double __value), (__value)) #endif #ifdef __USE_ISOC9X __inline_forward_c(double,nearbyint, (double __value), (__value)) #endif #if defined __USE_MISC || defined __USE_ISOC9X __inline_forward(float,frexpf, (float __value, int *__expptr), (__value, __expptr)) __inline_forward_c(float,floorf, (float __x), (__x)) __inline_forward_c(float,ceilf, (float __x), (__x)) #ifdef __USE_MISC __inline_forward_c(int,isinff, (float __value), (__value)) __inline_forward_c(int,finitef, (float __value), (__value)) __inline_forward_c(float,scalbnf, (float __x, int __n), (__x, __n)) __inline_forward_c(int,isnanf, (float __value), (__value)) __inline_forward_c(int,ilogbf, (float __value), (__value)) #endif #ifdef __USE_ISOC9X __inline_forward_c(float,nearbyintf, (float __value), (__value)) #endif __inline_forward(long double,frexpl, (long double __value, int *__expptr), (__value, __expptr)) __inline_forward_c(long double,floorl, (long double __x), (__x)) __inline_forward_c(long double,ceill, (long double __x), (__x)) #ifdef __USE_MISC __inline_forward_c(int,isinfl, (long double __value), (__value)) __inline_forward_c(int,finitel, (long double __value), (__value)) __inline_forward_c(long double,scalbnl, (long double __x, int __n), (__x, __n)) __inline_forward_c(int,isnanl, (long double __value), (__value)) __inline_forward_c(int,ilogbl, (long double __value), (__value)) #endif #ifdef __USE_ISOC9X __inline_forward_c(long double,nearbyintl, (long double __value), (__value)) __inline_forward_c(long int,rinttol, (long double __value), (__value)) #endif #endif /* Use misc or ISO C9X */ #undef __inline_forward #undef __inline_forward_c #endif /* !__NO_MATH_INLINES && __OPTIMIZE__ */ #endif /* GCC. */