/* s_tanl.c -- long double version of s_tan.c. * Conversion to long double by Ulrich Drepper, * Cygnus Support, drepper@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: $"; #endif /* tanl(x) * Return tangent function of x. * * kernel function: * __kernel_tanl ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2l ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ #include #include long double __tanl(long double x) { long double y[2],z=0.0; int32_t n, se; /* High word of x. */ GET_LDOUBLE_EXP(se,x); /* |x| ~< pi/4 */ se &= 0x7fff; if(se <= 0x3ffe) return __kernel_tanl(x,z,1); /* tan(Inf or NaN) is NaN */ else if (se==0x7fff) return x-x; /* NaN */ /* argument reduction needed */ else { n = __ieee754_rem_pio2l(x,y); return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } weak_alias (__tanl, tanl)