/* Compute x * y + z as ternary operation. Copyright (C) 2010-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Jakub Jelinek , 2010. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include /* This implementation uses rounding to odd to avoid problems with double rounding. See a paper by Boldo and Melquiond: http://www.lri.fr/~melquion/doc/08-tc.pdf */ double __fma (double x, double y, double z) { if (__glibc_unlikely (isinf (z))) { /* If z is Inf, but x and y are finite, the result should be z rather than NaN. */ if (isfinite (x) && isfinite (y)) return (z + x) + y; return (x * y) + z; } /* Ensure correct sign of exact 0 + 0. */ if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) return x * y + z; fenv_t env; feholdexcept (&env); fesetround (FE_TONEAREST); /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ #define C ((1ULL << (LDBL_MANT_DIG + 1) / 2) + 1) long double x1 = (long double) x * C; long double y1 = (long double) y * C; long double m1 = (long double) x * y; x1 = (x - x1) + x1; y1 = (y - y1) + y1; long double x2 = x - x1; long double y2 = y - y1; long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ long double a1 = z + m1; long double t1 = a1 - z; long double t2 = a1 - t1; t1 = m1 - t1; t2 = z - t2; long double a2 = t1 + t2; /* Ensure the arithmetic is not scheduled after feclearexcept call. */ math_force_eval (m2); math_force_eval (a2); feclearexcept (FE_INEXACT); /* If the result is an exact zero, ensure it has the correct sign. */ if (a1 == 0 && m2 == 0) { feupdateenv (&env); /* Ensure that round-to-nearest value of z + m1 is not reused. */ z = math_opt_barrier (z); return z + m1; } fesetround (FE_TOWARDZERO); /* Perform m2 + a2 addition with round to odd. */ a2 = a2 + m2; /* Add that to a1 again using rounding to odd. */ union ieee854_long_double u; u.d = a1 + a2; if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff) u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0; feupdateenv (&env); /* Add finally round to double precision. */ return u.d; } #ifndef __fma weak_alias (__fma, fma) #endif