/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const long double gamma_coeff[] = { 0x1.5555555555555556p-4L, -0xb.60b60b60b60b60bp-12L, 0x3.4034034034034034p-12L, -0x2.7027027027027028p-12L, 0x3.72a3c5631fe46aep-12L, -0x7.daac36664f1f208p-12L, 0x1.a41a41a41a41a41ap-8L, -0x7.90a1b2c3d4e5f708p-8L, }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 1766, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static long double gammal_positive (long double x, int *exp2_adj) { int local_signgam; if (x < 0.5L) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5L) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); } else if (x < 7.5L) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; long double n = __ceill (x - 1.5L); long double x_adj = x - n; long double eps; long double prod = __gamma_productl (x_adj, 0, n, &eps); return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) * prod * (1.0L + eps)); } else { long double eps = 0; long double x_eps = 0; long double x_adj = x; long double prod = 1; if (x < 13.0L) { /* Adjust into the range for applying Stirling's approximation. */ long double n = __ceill (13.0L - x); x_adj = x + n; x_eps = (x - (x_adj - n)); prod = __gamma_productl (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ long double exp_adj = -eps; long double x_adj_int = __roundl (x_adj); long double x_adj_frac = x_adj - x_adj_int; int x_adj_log2; long double x_adj_mant = __frexpl (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2l) { x_adj_log2--; x_adj_mant *= 2.0L; } *exp2_adj = x_adj_log2 * (int) x_adj_int; long double ret = (__ieee754_powl (x_adj_mant, x_adj) * __ieee754_exp2l (x_adj_log2 * x_adj_frac) * __ieee754_expl (-x_adj) * sqrtl (2 * M_PIl / x_adj) / prod); exp_adj += x_eps * __ieee754_logl (x_adj); long double bsum = gamma_coeff[NCOEFF - 1]; long double x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * __expm1l (exp_adj); } } long double __ieee754_gammal_r (long double x, int *signgamp) { uint32_t es, hx, lx; long double ret; GET_LDOUBLE_WORDS (es, hx, lx, x); if (__glibc_unlikely (((es & 0x7fff) | hx | lx) == 0)) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (__glibc_unlikely (es == 0xffffffff && ((hx & 0x7fffffff) | lx) == 0)) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if (__glibc_unlikely ((es & 0x7fff) == 0x7fff)) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (__builtin_expect ((es & 0x8000) != 0, 0) && __rintl (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (x >= 1756.0L) { /* Overflow. */ *signgamp = 0; return LDBL_MAX * LDBL_MAX; } else { SET_RESTORE_ROUNDL (FE_TONEAREST); if (x > 0.0L) { *signgamp = 0; int exp2_adj; ret = gammal_positive (x, &exp2_adj); ret = __scalbnl (ret, exp2_adj); } else if (x >= -LDBL_EPSILON / 4.0L) { *signgamp = 0; ret = 1.0L / x; } else { long double tx = __truncl (x); *signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1; if (x <= -1766.0L) /* Underflow. */ ret = LDBL_MIN * LDBL_MIN; else { long double frac = tx - x; if (frac > 0.5L) frac = 1.0L - frac; long double sinpix = (frac <= 0.25L ? __sinl (M_PIl * frac) : __cosl (M_PIl * (0.5L - frac))); int exp2_adj; ret = M_PIl / (-x * sinpix * gammal_positive (-x, &exp2_adj)); ret = __scalbnl (ret, -exp2_adj); math_check_force_underflow_nonneg (ret); } } } if (isinf (ret) && x != 0) { if (*signgamp < 0) return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX); else return __copysignl (LDBL_MAX, ret) * LDBL_MAX; } else if (ret == 0) { if (*signgamp < 0) return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN); else return __copysignl (LDBL_MIN, ret) * LDBL_MIN; } else return ret; } strong_alias (__ieee754_gammal_r, __gammal_r_finite)