/* Compute x^2 + y^2 - 1, without large cancellation error. Copyright (C) 2012 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include /* Calculate X + Y exactly and store the result in *HI + *LO. It is given that |X| >= |Y| and the values are small enough that no overflow occurs. */ static inline void add_split (double *hi, double *lo, double x, double y) { /* Apply Dekker's algorithm. */ *hi = x + y; *lo = (x - *hi) + y; } /* Calculate X * Y exactly and store the result in *HI + *LO. It is given that the values are small enough that no overflow occurs and large enough (or zero) that no underflow occurs. */ static inline void mul_split (double *hi, double *lo, double x, double y) { #ifdef __FP_FAST_FMA /* Fast built-in fused multiply-add. */ *hi = x * y; *lo = __builtin_fma (x, y, -*hi); #elif defined FP_FAST_FMA /* Fast library fused multiply-add, compiler before GCC 4.6. */ *hi = x * y; *lo = __fma (x, y, -*hi); #else /* Apply Dekker's algorithm. */ *hi = x * y; # define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1) double x1 = x * C; double y1 = y * C; # undef C x1 = (x - x1) + x1; y1 = (y - y1) + y1; double x2 = x - x1; double y2 = y - y1; *lo = (((x1 * y1 - *hi) + x1 * y2) + x2 * y1) + x2 * y2; #endif } /* Compare absolute values of floating-point values pointed to by P and Q for qsort. */ static int compare (const void *p, const void *q) { double pd = fabs (*(const double *) p); double qd = fabs (*(const double *) q); if (pd < qd) return -1; else if (pd == qd) return 0; else return 1; } /* Return X^2 + Y^2 - 1, computed without large cancellation error. It is given that 1 > X >= Y >= epsilon / 2, and that either X >= 0.75 or Y >= 0.5. */ long double __x2y2m1l (long double x, long double y) { double vals[12]; SET_RESTORE_ROUND (FE_TONEAREST); union ibm_extended_long_double xu, yu; xu.d = x; yu.d = y; if (fabs (xu.dd[1]) < 0x1p-500) xu.dd[1] = 0.0; if (fabs (yu.dd[1]) < 0x1p-500) yu.dd[1] = 0.0; mul_split (&vals[1], &vals[0], xu.dd[0], xu.dd[0]); mul_split (&vals[3], &vals[2], xu.dd[0], xu.dd[1]); vals[2] *= 2.0; vals[3] *= 2.0; mul_split (&vals[5], &vals[4], xu.dd[1], xu.dd[1]); mul_split (&vals[7], &vals[6], yu.dd[0], yu.dd[0]); mul_split (&vals[9], &vals[8], yu.dd[0], yu.dd[1]); vals[8] *= 2.0; vals[9] *= 2.0; mul_split (&vals[11], &vals[10], yu.dd[1], yu.dd[1]); if (xu.dd[0] >= 0.75) vals[1] -= 1.0; else { vals[1] -= 0.5; vals[7] -= 0.5; } qsort (vals, 12, sizeof (double), compare); /* Add up the values so that each element of VALS has absolute value at most equal to the last set bit of the next nonzero element. */ for (size_t i = 0; i <= 10; i++) { add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]); qsort (vals + i + 1, 11 - i, sizeof (double), compare); } /* Now any error from this addition will be small. */ long double retval = (long double) vals[11]; for (size_t i = 10; i != (size_t) -1; i--) retval += (long double) vals[i]; return retval; }