/* s_nextafterl.c -- long double version of s_nextafter.c. * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: $"; #endif /* IEEE functions * nextafterl(x,y) * return the next machine floating-point number of x in the * direction toward y. * Special cases: */ #include #include #include long double __nextafterl(long double x, long double y) { int64_t hx,hy,ihx,ihy; uint64_t lx; double xhi, xlo, yhi; ldbl_unpack (x, &xhi, &xlo); EXTRACT_WORDS64 (hx, xhi); EXTRACT_WORDS64 (lx, xlo); yhi = ldbl_high (y); EXTRACT_WORDS64 (hy, yhi); ihx = hx&0x7fffffffffffffffLL; /* |hx| */ ihy = hy&0x7fffffffffffffffLL; /* |hy| */ if((ihx>0x7ff0000000000000LL) || /* x is nan */ (ihy>0x7ff0000000000000LL)) /* y is nan */ return x+y; /* signal the nan */ if(x==y) return y; /* x=y, return y */ if(ihx == 0) { /* x == 0 */ long double u; /* return +-minsubnormal */ hy = (hy & 0x8000000000000000ULL) | 1; INSERT_WORDS64 (yhi, hy); x = yhi; u = math_opt_barrier (x); u = u * u; math_force_eval (u); /* raise underflow flag */ return x; } long double u; if(x > y) { /* x > y, x -= ulp */ /* This isn't the largest magnitude correctly rounded long double as you can see from the lowest mantissa bit being zero. It is however the largest magnitude long double with a 106 bit mantissa, and nextafterl is insane with variable precision. So to make nextafterl sane we assume 106 bit precision. */ if((hx==0xffefffffffffffffLL)&&(lx==0xfc8ffffffffffffeLL)) return x+x; /* overflow, return -inf */ if (hx >= 0x7ff0000000000000LL) { u = 0x1.fffffffffffff7ffffffffffff8p+1023L; return u; } if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */ u = math_opt_barrier (x); x -= __LDBL_DENORM_MIN__; if (ihx < 0x0360000000000000LL || (hx > 0 && (int64_t) lx <= 0) || (hx < 0 && (int64_t) lx > 1)) { u = u * u; math_force_eval (u); /* raise underflow flag */ } return x; } if (ihx < 0x06a0000000000000LL) { /* ulp will denormal */ INSERT_WORDS64 (yhi, hx & (0x7ffLL<<52)); u = yhi; u *= 0x1.0000000000000p-105L; } else { INSERT_WORDS64 (yhi, (hx & (0x7ffLL<<52))-(0x069LL<<52)); u = yhi; } return x - u; } else { /* x < y, x += ulp */ if((hx==0x7fefffffffffffffLL)&&(lx==0x7c8ffffffffffffeLL)) return x+x; /* overflow, return +inf */ if ((uint64_t) hx >= 0xfff0000000000000ULL) { u = -0x1.fffffffffffff7ffffffffffff8p+1023L; return u; } if(ihx <= 0x0360000000000000LL) { /* x <= LDBL_MIN */ u = math_opt_barrier (x); x += __LDBL_DENORM_MIN__; if (ihx < 0x0360000000000000LL || (hx > 0 && (int64_t) lx < 0 && lx != 0x8000000000000001LL) || (hx < 0 && (int64_t) lx >= 0)) { u = u * u; math_force_eval (u); /* raise underflow flag */ } if (x == 0.0L) /* handle negative __LDBL_DENORM_MIN__ case */ x = -0.0L; return x; } if (ihx < 0x06a0000000000000LL) { /* ulp will denormal */ INSERT_WORDS64 (yhi, hx & (0x7ffLL<<52)); u = yhi; u *= 0x1.0000000000000p-105L; } else { INSERT_WORDS64 (yhi, (hx & (0x7ffLL<<52))-(0x069LL<<52)); u = yhi; } return x + u; } } strong_alias (__nextafterl, __nexttowardl) long_double_symbol (libm, __nextafterl, nextafterl); long_double_symbol (libm, __nexttowardl, nexttowardl);