/* Compute x * y + z as ternary operation. Copyright (C) 2011-2021 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include #include #include #include #include /* Calculate X + Y exactly and store the result in *HI + *LO. It is given that |X| >= |Y| and the values are small enough that no overflow occurs. */ static void add_split (double *hi, double *lo, double x, double y) { /* Apply Dekker's algorithm. */ *hi = x + y; *lo = (x - *hi) + y; } /* Value with extended range, used in intermediate computations. */ typedef struct { /* Value in [0.5, 1), as from frexp, or 0. */ double val; /* Exponent of power of 2 it is multiplied by, or 0 for zero. */ int exp; } ext_val; /* Store D as an ext_val value. */ static void store_ext_val (ext_val *v, double d) { v->val = __frexp (d, &v->exp); } /* Store X * Y as ext_val values *V0 and *V1. */ static void mul_ext_val (ext_val *v0, ext_val *v1, double x, double y) { int xexp, yexp; x = __frexp (x, &xexp); y = __frexp (y, &yexp); double hi, lo; mul_split (&hi, &lo, x, y); store_ext_val (v0, hi); if (hi != 0) v0->exp += xexp + yexp; store_ext_val (v1, lo); if (lo != 0) v1->exp += xexp + yexp; } /* Compare absolute values of ext_val values pointed to by P and Q for qsort. */ static int compare (const void *p, const void *q) { const ext_val *pe = p; const ext_val *qe = q; if (pe->val == 0) return qe->val == 0 ? 0 : -1; else if (qe->val == 0) return 1; else if (pe->exp < qe->exp) return -1; else if (pe->exp > qe->exp) return 1; else { double pd = fabs (pe->val); double qd = fabs (qe->val); if (pd < qd) return -1; else if (pd == qd) return 0; else return 1; } } /* Calculate *X + *Y exactly, storing the high part in *X (rounded to nearest) and the low part in *Y. It is given that |X| >= |Y|. */ static void add_split_ext (ext_val *x, ext_val *y) { int xexp = x->exp, yexp = y->exp; if (y->val == 0 || xexp - yexp > 53) return; double hi = x->val; double lo = __scalbn (y->val, yexp - xexp); add_split (&hi, &lo, hi, lo); store_ext_val (x, hi); if (hi != 0) x->exp += xexp; store_ext_val (y, lo); if (lo != 0) y->exp += xexp; } long double __fmal (long double x, long double y, long double z) { double xhi, xlo, yhi, ylo, zhi, zlo; int64_t hx, hy, hz; int xexp, yexp, zexp; double scale_val; int scale_exp; ldbl_unpack (x, &xhi, &xlo); EXTRACT_WORDS64 (hx, xhi); xexp = (hx & 0x7ff0000000000000LL) >> 52; ldbl_unpack (y, &yhi, &ylo); EXTRACT_WORDS64 (hy, yhi); yexp = (hy & 0x7ff0000000000000LL) >> 52; ldbl_unpack (z, &zhi, &zlo); EXTRACT_WORDS64 (hz, zhi); zexp = (hz & 0x7ff0000000000000LL) >> 52; /* If z is Inf or NaN, but x and y are finite, avoid any exceptions from computing x * y. */ if (zexp == 0x7ff && xexp != 0x7ff && yexp != 0x7ff) return (z + x) + y; /* If z is zero and x are y are nonzero, compute the result as x * y to avoid the wrong sign of a zero result if x * y underflows to 0. */ if (z == 0 && x != 0 && y != 0) return x * y; /* If x or y or z is Inf/NaN, or if x * y is zero, compute as x * y + z. */ if (xexp == 0x7ff || yexp == 0x7ff || zexp == 0x7ff || x == 0 || y == 0) return (x * y) + z; { SET_RESTORE_ROUND (FE_TONEAREST); ext_val vals[10]; store_ext_val (&vals[0], zhi); store_ext_val (&vals[1], zlo); mul_ext_val (&vals[2], &vals[3], xhi, yhi); mul_ext_val (&vals[4], &vals[5], xhi, ylo); mul_ext_val (&vals[6], &vals[7], xlo, yhi); mul_ext_val (&vals[8], &vals[9], xlo, ylo); qsort (vals, 10, sizeof (ext_val), compare); /* Add up the values so that each element of VALS has absolute value at most equal to the last set bit of the next nonzero element. */ for (size_t i = 0; i <= 8; i++) { add_split_ext (&vals[i + 1], &vals[i]); qsort (vals + i + 1, 9 - i, sizeof (ext_val), compare); } /* Add up the values in the other direction, so that each element of VALS has absolute value less than 5ulp of the next value. */ size_t dstpos = 9; for (size_t i = 1; i <= 9; i++) { if (vals[dstpos].val == 0) { vals[dstpos] = vals[9 - i]; vals[9 - i].val = 0; vals[9 - i].exp = 0; } else { add_split_ext (&vals[dstpos], &vals[9 - i]); if (vals[9 - i].val != 0) { if (9 - i < dstpos - 1) { vals[dstpos - 1] = vals[9 - i]; vals[9 - i].val = 0; vals[9 - i].exp = 0; } dstpos--; } } } /* If the result is an exact zero, it results from adding two values with opposite signs; recompute in the original rounding mode. */ if (vals[9].val == 0) goto zero_out; /* Adding the top three values will now give a result as accurate as the underlying long double arithmetic. */ add_split_ext (&vals[9], &vals[8]); if (compare (&vals[8], &vals[7]) < 0) { ext_val tmp = vals[7]; vals[7] = vals[8]; vals[8] = tmp; } add_split_ext (&vals[8], &vals[7]); add_split_ext (&vals[9], &vals[8]); if (vals[9].exp > DBL_MAX_EXP || vals[9].exp < DBL_MIN_EXP) { /* Overflow or underflow, with the result depending on the original rounding mode, but not on the low part computed here. */ scale_val = vals[9].val; scale_exp = vals[9].exp; goto scale_out; } double hi = __scalbn (vals[9].val, vals[9].exp); double lo = __scalbn (vals[8].val, vals[8].exp); /* It is possible that the low part became subnormal and was rounded so that the result is no longer canonical. */ ldbl_canonicalize (&hi, &lo); long double ret = ldbl_pack (hi, lo); math_check_force_underflow (ret); return ret; } scale_out: scale_val = math_opt_barrier (scale_val); scale_val = __scalbn (scale_val, scale_exp); if (fabs (scale_val) == DBL_MAX) return copysignl (LDBL_MAX, scale_val); math_check_force_underflow (scale_val); return scale_val; zero_out:; double zero = 0.0; zero = math_opt_barrier (zero); return zero - zero; } #if IS_IN (libm) long_double_symbol (libm, __fmal, fmal); #else long_double_symbol (libc, __fmal, fmal); #endif