/* Implementation of cbrtl. IBM Extended Precision version. Cephes Math Library Release 2.2: January, 1991 Copyright 1984, 1991 by Stephen L. Moshier Adapted for glibc October, 2001. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ /* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c. */ #define _Float128 long double #define L(x) x ## L #include #include #include static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251); static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493); static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467); static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257); _Float128 __cbrtl (_Float128 x) { int e, rem, sign; _Float128 z; if (!isfinite (x)) return x + x; if (x == 0) return (x); if (x > 0) sign = 1; else { sign = -1; x = -x; } z = x; /* extract power of 2, leaving mantissa between 0.5 and 1 */ x = __frexpl (x, &e); /* Approximate cube root of number between .5 and 1, peak relative error = 1.2e-6 */ x = ((((L(1.3584464340920900529734e-1) * x - L(6.3986917220457538402318e-1)) * x + L(1.2875551670318751538055e0)) * x - L(1.4897083391357284957891e0)) * x + L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1); /* exponent divided by 3 */ if (e >= 0) { rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2; else if (rem == 2) x *= CBRT4; } else { /* argument less than 1 */ e = -e; rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2I; else if (rem == 2) x *= CBRT4I; e = -e; } /* multiply by power of 2 */ x = __ldexpl (x, e); /* Newton iteration */ x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); if (sign < 0) x = -x; return (x); } long_double_symbol (libm, __cbrtl, cbrtl);