/* Implementation of cbrtl. IBM Extended Precision version.
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Adapted for glibc October, 2001.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
. */
/* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c. */
#define _Float128 long double
#define L(x) x ## L
#include
#include
#include
static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251);
static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493);
static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467);
static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257);
_Float128
__cbrtl (_Float128 x)
{
int e, rem, sign;
_Float128 z;
if (!isfinite (x))
return x + x;
if (x == 0)
return (x);
if (x > 0)
sign = 1;
else
{
sign = -1;
x = -x;
}
z = x;
/* extract power of 2, leaving mantissa between 0.5 and 1 */
x = __frexpl (x, &e);
/* Approximate cube root of number between .5 and 1,
peak relative error = 1.2e-6 */
x = ((((L(1.3584464340920900529734e-1) * x
- L(6.3986917220457538402318e-1)) * x
+ L(1.2875551670318751538055e0)) * x
- L(1.4897083391357284957891e0)) * x
+ L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1);
/* exponent divided by 3 */
if (e >= 0)
{
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2;
else if (rem == 2)
x *= CBRT4;
}
else
{ /* argument less than 1 */
e = -e;
rem = e;
e /= 3;
rem -= 3 * e;
if (rem == 1)
x *= CBRT2I;
else if (rem == 2)
x *= CBRT4I;
e = -e;
}
/* multiply by power of 2 */
x = __ldexpl (x, e);
/* Newton iteration */
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
if (sign < 0)
x = -x;
return (x);
}
long_double_symbol (libm, __cbrtl, cbrtl);