/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2012 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /*********************************************************************/ /* MODULE_NAME: uroot.c */ /* */ /* FUNCTION: usqrt */ /* */ /* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */ /* uroot.tbl */ /* */ /* An ultimate sqrt routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of square */ /* root of x. */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /*********************************************************************/ #include typedef unsigned int int4; typedef union {int4 i[4]; long double x; double d[2]; } mynumber; static const mynumber t512 = {{0x5ff00000, 0x00000000, 0x00000000, 0x00000000 }}, /* 2^512 */ tm256 = {{0x2ff00000, 0x00000000, 0x00000000, 0x00000000 }}; /* 2^-256 */ static const double two54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */ twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 */ /*********************************************************************/ /* An ultimate sqrt routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of square */ /* root of x. */ /*********************************************************************/ long double __ieee754_sqrtl(long double x) { static const long double big = 134217728.0, big1 = 134217729.0; long double t,s,i; mynumber a,c; int4 k, l, m; int n; double d; a.x=x; k=a.i[0] & 0x7fffffff; /*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/ if (k>0x000fffff && k<0x7ff00000) { if (x < 0) return (big1-big1)/(big-big); l = (k&0x001fffff)|0x3fe00000; if (((a.i[2] & 0x7fffffff) | a.i[3]) != 0) { n = (int) ((l - k) * 2) >> 21; m = (a.i[2] >> 20) & 0x7ff; if (m == 0) { a.d[1] *= two54; m = ((a.i[2] >> 20) & 0x7ff) - 54; } m += n; if ((int) m > 0) a.i[2] = (a.i[2] & 0x800fffff) | (m << 20); else if ((int) m <= -54) { a.i[2] &= 0x80000000; a.i[3] = 0; } else { m += 54; a.i[2] = (a.i[2] & 0x800fffff) | (m << 20); a.d[1] *= twom54; } } a.i[0] = l; s = a.x; d = __ieee754_sqrt (a.d[0]); c.i[0] = 0x20000000+((k&0x7fe00000)>>1); c.i[1] = 0; c.i[2] = 0; c.i[3] = 0; i = d; t = 0.5L * (i + s / i); i = 0.5L * (t + s / t); return c.x * i; } else { if (k>=0x7ff00000) { if (a.i[0] == 0xfff00000 && a.i[1] == 0) return (big1-big1)/(big-big); /* sqrt (-Inf) = NaN. */ return x; /* sqrt (NaN) = NaN, sqrt (+Inf) = +Inf. */ } if (x == 0) return x; if (x < 0) return (big1-big1)/(big-big); return tm256.x*__ieee754_sqrtl(x*t512.x); } } strong_alias (__ieee754_sqrtl, __sqrtl_finite)