/* Copyright (C) 1995-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include
#include
#include
#include
#include
/* Convert a `long double' in IEEE854 quad-precision format to a
multi-precision integer representing the significand scaled up by its
number of bits (113 for long double) and an integral power of two
(MPN frexpl). */
mp_size_t
__mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
int *expt, int *is_neg,
_Float128 value)
{
union ieee854_long_double u;
u.d = value;
*is_neg = u.ieee.negative;
*expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS;
#if BITS_PER_MP_LIMB == 32
res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction. */
res_ptr[1] = u.ieee.mantissa2;
res_ptr[2] = u.ieee.mantissa1;
res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits. */
#define N 4
#elif BITS_PER_MP_LIMB == 64
/* Hopefully the compiler will combine the two bitfield extracts
and this composition into just the original quadword extract. */
res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3;
res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
#define N 2
#else
#error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
#endif
/* The format does not fill the last limb. There are some zeros. */
#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
- (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
if (u.ieee.exponent == 0)
{
/* A biased exponent of zero is a special case.
Either it is a zero or it is a denormal number. */
if (res_ptr[0] == 0 && res_ptr[1] == 0
&& res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */
/* It's zero. */
*expt = 0;
else
{
/* It is a denormal number, meaning it has no implicit leading
one bit, and its exponent is in fact the format minimum. */
int cnt;
#if N == 2
if (res_ptr[N - 1] != 0)
{
count_leading_zeros (cnt, res_ptr[N - 1]);
cnt -= NUM_LEADING_ZEROS;
res_ptr[N - 1] = res_ptr[N - 1] << cnt
| (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
res_ptr[0] <<= cnt;
*expt = LDBL_MIN_EXP - 1 - cnt;
}
else
{
count_leading_zeros (cnt, res_ptr[0]);
if (cnt >= NUM_LEADING_ZEROS)
{
res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
res_ptr[0] = 0;
}
else
{
res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
}
*expt = LDBL_MIN_EXP - 1
- (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
}
#else
int j, k, l;
for (j = N - 1; j > 0; j--)
if (res_ptr[j] != 0)
break;
count_leading_zeros (cnt, res_ptr[j]);
cnt -= NUM_LEADING_ZEROS;
l = N - 1 - j;
if (cnt < 0)
{
cnt += BITS_PER_MP_LIMB;
l--;
}
if (!cnt)
for (k = N - 1; k >= l; k--)
res_ptr[k] = res_ptr[k-l];
else
{
for (k = N - 1; k > l; k--)
res_ptr[k] = res_ptr[k-l] << cnt
| res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt);
res_ptr[k--] = res_ptr[0] << cnt;
}
for (; k >= 0; k--)
res_ptr[k] = 0;
*expt = LDBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt;
#endif
}
}
else
/* Add the implicit leading one bit for a normalized number. */
res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1
- ((N - 1) * BITS_PER_MP_LIMB));
return N;
}