/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Long double expansions are Copyright (C) 2001 Stephen L. Moshier These modifications are distributed here under the following terms: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* __kernel_tanl( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-57, return x with inexact if x!=0. * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) * on [0,0.67433]. * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * r = x^3 * R(x^2) * then * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) * * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ #include "math.h" #include "math_private.h" #ifdef __STDC__ static const long double #else static long double #endif one = 1.0L, pio4hi = 7.8539816339744830961566084581987569936977E-1L, pio4lo = 2.1679525325309452561992610065108379921906E-35L, /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) 0 <= x <= 0.6743316650390625 Peak relative error 8.0e-36 */ TH = 3.333333333333333333333333333333333333333E-1L, T0 = -1.813014711743583437742363284336855889393E7L, T1 = 1.320767960008972224312740075083259247618E6L, T2 = -2.626775478255838182468651821863299023956E4L, T3 = 1.764573356488504935415411383687150199315E2L, T4 = -3.333267763822178690794678978979803526092E-1L, U0 = -1.359761033807687578306772463253710042010E8L, U1 = 6.494370630656893175666729313065113194784E7L, U2 = -4.180787672237927475505536849168729386782E6L, U3 = 8.031643765106170040139966622980914621521E4L, U4 = -5.323131271912475695157127875560667378597E2L; /* 1.000000000000000000000000000000000000000E0 */ #ifdef __STDC__ long double __kernel_tanl (long double x, long double y, int iy) #else long double __kernel_tanl (x, y, iy) long double x, y; int iy; #endif { long double z, r, v, w, s; int32_t ix, sign; ieee854_long_double_shape_type u, u1; u.value = x; ix = u.parts32.w0 & 0x7fffffff; if (ix < 0x3fc60000) /* x < 2**-57 */ { if ((int) x == 0) { /* generate inexact */ if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3 | (iy + 1)) == 0) return one / fabs (x); else return (iy == 1) ? x : -one / x; } } if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ { if ((u.parts32.w0 & 0x80000000) != 0) { x = -x; y = -y; sign = -1; } else sign = 1; z = pio4hi - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); r = r / v; s = z * x; r = y + z * (s * r + y); r += TH * s; w = x + r; if (ix >= 0x3ffe5942) { v = (long double) iy; w = (v - 2.0 * (x - (w * w / (w + v) - r))); if (sign < 0) w = -w; return w; } if (iy == 1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ u1.value = w; u1.parts32.w2 = 0; u1.parts32.w3 = 0; v = r - (u1.value - x); /* u1+v = r+x */ z = -1.0 / w; u.value = z; u.parts32.w2 = 0; u.parts32.w3 = 0; s = 1.0 + u.value * u1.value; return u.value + z * (s + u.value * v); } }