/* e_sinhl.c -- long double version of e_sinh.c. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Changes for 128-bit long double are Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> and are incorporated herein by permission of the author. The author reserves the right to distribute this material elsewhere under different copying permissions. These modifications are distributed here under the following terms: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see <https://www.gnu.org/licenses/>. */ /* __ieee754_sinhl(x) * Method : * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). * 2. * E + E/(E+1) * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) * 2 * * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) * ln2ovft < x : sinhl(x) := x*shuge (overflow) * * Special cases: * sinhl(x) is |x| if x is +INF, -INF, or NaN. * only sinhl(0)=0 is exact for finite x. */ #include <float.h> #include <math.h> #include <math_private.h> #include <math-underflow.h> #include <libm-alias-finite.h> static const _Float128 one = 1.0, shuge = L(1.0e4931), ovf_thresh = L(1.1357216553474703894801348310092223067821E4); _Float128 __ieee754_sinhl (_Float128 x) { _Float128 t, w, h; uint32_t jx, ix; ieee854_long_double_shape_type u; /* Words of |x|. */ u.value = x; jx = u.parts32.w0; ix = jx & 0x7fffffff; /* x is INF or NaN */ if (ix >= 0x7fff0000) return x + x; h = 0.5; if (jx & 0x80000000) h = -h; /* Absolute value of x. */ u.parts32.w0 = ix; /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ if (ix <= 0x40044000) { if (ix < 0x3fc60000) /* |x| < 2^-57 */ { math_check_force_underflow (x); if (shuge + x > one) return x; /* sinh(tiny) = tiny with inexact */ } t = __expm1l (u.value); if (ix < 0x3fff0000) return h * (2.0 * t - t * t / (t + one)); return h * (t + t / (t + one)); } /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ if (ix <= 0x400c62e3) /* 11356.375 */ return h * __ieee754_expl (u.value); /* |x| in [log(maxdouble), overflowthreshold] Overflow threshold is log(2 * maxdouble). */ if (u.value <= ovf_thresh) { w = __ieee754_expl (0.5 * u.value); t = h * w; return t * w; } /* |x| > overflowthreshold, sinhl(x) overflow */ return x * shuge; } libm_alias_finite (__ieee754_sinhl, __sinhl)