/* Euclidean distance function. Long Double/Binary128 version. Copyright (C) 2021-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ /* This implementation is based on 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for subnormal results. [1] https://arxiv.org/pdf/1904.09481.pdf */ #include #include #include #include #define SCALE L(0x1p-8303) #define LARGE_VAL L(0x1.6a09e667f3bcc908b2fb1366ea95p+8191) #define TINY_VAL L(0x1p-8191) #define EPS L(0x1p-114) /* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0 and squaring ax, ay and (ax - ay) does not overflow or underflow. */ static inline _Float128 kernel (_Float128 ax, _Float128 ay) { _Float128 t1, t2; _Float128 h = sqrtl (ax * ax + ay * ay); if (h <= L(2.0) * ay) { _Float128 delta = h - ay; t1 = ax * (L(2.0) * delta - ax); t2 = (delta - L(2.0) * (ax - ay)) * delta; } else { _Float128 delta = h - ax; t1 = L(2.0) * delta * (ax - L(2.0) * ay); t2 = (L(4.0) * delta - ay) * ay + delta * delta; } h -= (t1 + t2) / (L(2.0) * h); return h; } _Float128 __ieee754_hypotl(_Float128 x, _Float128 y) { if (!isfinite(x) || !isfinite(y)) { if ((isinf (x) || isinf (y)) && !issignaling (x) && !issignaling (y)) return INFINITY; return x + y; } x = fabsl (x); y = fabsl (y); _Float128 ax = x < y ? y : x; _Float128 ay = x < y ? x : y; /* If ax is huge, scale both inputs down. */ if (__glibc_unlikely (ax > LARGE_VAL)) { if (__glibc_unlikely (ay <= ax * EPS)) return ax + ay; return kernel (ax * SCALE, ay * SCALE) / SCALE; } /* If ay is tiny, scale both inputs up. */ if (__glibc_unlikely (ay < TINY_VAL)) { if (__glibc_unlikely (ax >= ay / EPS)) return ax + ay; ax = kernel (ax / SCALE, ay / SCALE) * SCALE; math_check_force_underflow_nonneg (ax); return ax; } /* Common case: ax is not huge and ay is not tiny. */ if (__glibc_unlikely (ay <= ax * EPS)) return ax + ay; return kernel (ax, ay); } libm_alias_finite (__ieee754_hypotl, __hypotl)