/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997 and Jakub Jelinek . */ #include #include #include #include #include /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const _Float128 gamma_coeff[] = { L(0x1.5555555555555555555555555555p-4), L(-0xb.60b60b60b60b60b60b60b60b60b8p-12), L(0x3.4034034034034034034034034034p-12), L(-0x2.7027027027027027027027027028p-12), L(0x3.72a3c5631fe46ae1d4e700dca8f2p-12), L(-0x7.daac36664f1f207daac36664f1f4p-12), L(0x1.a41a41a41a41a41a41a41a41a41ap-8), L(-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8), L(0x2.dfd2c703c0cfff430edfd2c703cp-4), L(-0x1.6476701181f39edbdb9ce625987dp+0), L(0xd.672219167002d3a7a9c886459cp+0), L(-0x9.cd9292e6660d55b3f712eb9e07c8p+4), L(0x8.911a740da740da740da740da741p+8), L(-0x8.d0cc570e255bf59ff6eec24b49p+12), }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 1775, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static _Float128 gammal_positive (_Float128 x, int *exp2_adj) { int local_signgam; if (x < L(0.5)) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; } else if (x <= L(1.5)) { *exp2_adj = 0; return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); } else if (x < L(12.5)) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; _Float128 n = ceill (x - L(1.5)); _Float128 x_adj = x - n; _Float128 eps; _Float128 prod = __gamma_productl (x_adj, 0, n, &eps); return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) * prod * (1 + eps)); } else { _Float128 eps = 0; _Float128 x_eps = 0; _Float128 x_adj = x; _Float128 prod = 1; if (x < 24) { /* Adjust into the range for applying Stirling's approximation. */ _Float128 n = ceill (24 - x); x_adj = x + n; x_eps = (x - (x_adj - n)); prod = __gamma_productl (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ _Float128 exp_adj = -eps; _Float128 x_adj_int = __roundl (x_adj); _Float128 x_adj_frac = x_adj - x_adj_int; int x_adj_log2; _Float128 x_adj_mant = __frexpl (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2l) { x_adj_log2--; x_adj_mant *= 2; } *exp2_adj = x_adj_log2 * (int) x_adj_int; _Float128 ret = (__ieee754_powl (x_adj_mant, x_adj) * __ieee754_exp2l (x_adj_log2 * x_adj_frac) * __ieee754_expl (-x_adj) * sqrtl (2 * M_PIl / x_adj) / prod); exp_adj += x_eps * __ieee754_logl (x_adj); _Float128 bsum = gamma_coeff[NCOEFF - 1]; _Float128 x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * __expm1l (exp_adj); } } _Float128 __ieee754_gammal_r (_Float128 x, int *signgamp) { int64_t hx; uint64_t lx; _Float128 ret; GET_LDOUBLE_WORDS64 (hx, lx, x); if (((hx & 0x7fffffffffffffffLL) | lx) == 0) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintl (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (hx == 0xffff000000000000ULL && lx == 0) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 1756) { /* Overflow. */ *signgamp = 0; return LDBL_MAX * LDBL_MAX; } else { SET_RESTORE_ROUNDL (FE_TONEAREST); if (x > 0) { *signgamp = 0; int exp2_adj; ret = gammal_positive (x, &exp2_adj); ret = __scalbnl (ret, exp2_adj); } else if (x >= -LDBL_EPSILON / 4) { *signgamp = 0; ret = 1 / x; } else { _Float128 tx = truncl (x); *signgamp = (tx == 2 * truncl (tx / 2)) ? -1 : 1; if (x <= -1775) /* Underflow. */ ret = LDBL_MIN * LDBL_MIN; else { _Float128 frac = tx - x; if (frac > L(0.5)) frac = 1 - frac; _Float128 sinpix = (frac <= L(0.25) ? __sinl (M_PIl * frac) : __cosl (M_PIl * (L(0.5) - frac))); int exp2_adj; ret = M_PIl / (-x * sinpix * gammal_positive (-x, &exp2_adj)); ret = __scalbnl (ret, -exp2_adj); math_check_force_underflow_nonneg (ret); } } } if (isinf (ret) && x != 0) { if (*signgamp < 0) return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX); else return __copysignl (LDBL_MAX, ret) * LDBL_MAX; } else if (ret == 0) { if (*signgamp < 0) return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN); else return __copysignl (LDBL_MIN, ret) * LDBL_MIN; } else return ret; } strong_alias (__ieee754_gammal_r, __gammal_r_finite)