/* s_tanf.c -- float version of s_tan.c. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: s_tanf.c,v 1.4 1995/05/10 20:48:20 jtc Exp $"; #endif #include #include #include #include #include "s_sincosf.h" /* Reduce range of X to a multiple of PI/2. The modulo result is between -PI/4 and PI/4 and returned as a high part y[0] and a low part y[1]. The low bit in the return value indicates the first or 2nd half of tanf. */ static inline int32_t rem_pio2f (float x, float *y) { double dx = x; int n; const sincos_t *p = &__sincosf_table[0]; if (__glibc_likely (abstop12 (x) < abstop12 (120.0f))) dx = reduce_fast (dx, p, &n); else { uint32_t xi = asuint (x); int sign = xi >> 31; dx = reduce_large (xi, &n); dx = sign ? -dx : dx; } y[0] = dx; y[1] = dx - y[0]; return n; } float __tanf(float x) { float y[2],z=0.0; int32_t n, ix; GET_FLOAT_WORD(ix,x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7f800000) { if (ix==0x7f800000) __set_errno (EDOM); return x-x; /* NaN */ } /* argument reduction needed */ else { n = rem_pio2f(x,y); return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } libm_alias_float (__tan, tan)