/* Compute sine of argument. Copyright (C) 2017 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #ifndef SINF # define SINF_FUNC __sinf #else # define SINF_FUNC SINF #endif /* Chebyshev constants for cos, range -PI/4 - PI/4. */ static const double C0 = -0x1.ffffffffe98aep-2; static const double C1 = 0x1.55555545c50c7p-5; static const double C2 = -0x1.6c16b348b6874p-10; static const double C3 = 0x1.a00eb9ac43ccp-16; static const double C4 = -0x1.23c97dd8844d7p-22; /* Chebyshev constants for sin, range -PI/4 - PI/4. */ static const double S0 = -0x1.5555555551cd9p-3; static const double S1 = 0x1.1111110c2688bp-7; static const double S2 = -0x1.a019f8b4bd1f9p-13; static const double S3 = 0x1.71d7264e6b5b4p-19; static const double S4 = -0x1.a947e1674b58ap-26; /* Chebyshev constants for sin, range 2^-27 - 2^-5. */ static const double SS0 = -0x1.555555543d49dp-3; static const double SS1 = 0x1.110f475cec8c5p-7; /* PI/2 with 98 bits of accuracy. */ static const double PI_2_hi = -0x1.921fb544p+0; static const double PI_2_lo = -0x1.0b4611a626332p-34; static const double SMALL = 0x1p-50; /* 2^-50. */ static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */ #define FLOAT_EXPONENT_SHIFT 23 #define FLOAT_EXPONENT_BIAS 127 static const double pio2_table[] = { 0 * M_PI_2, 1 * M_PI_2, 2 * M_PI_2, 3 * M_PI_2, 4 * M_PI_2, 5 * M_PI_2 }; static const double invpio4_table[] = { 0x0p+0, 0x1.45f306cp+0, 0x1.c9c882ap-28, 0x1.4fe13a8p-58, 0x1.f47d4dp-85, 0x1.bb81b6cp-112, 0x1.4acc9ep-142, 0x1.0e4107cp-169 }; static const int ones[] = { +1, -1 }; /* Compute the sine value using Chebyshev polynomials where THETA is the range reduced absolute value of the input and it is less than Pi/4, N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide whether a sine or cosine approximation is more accurate and SIGNBIT is used to add the correct sign after the Chebyshev polynomial is computed. */ static inline float reduced (const double theta, const unsigned int n, const unsigned int signbit) { double sx; const double theta2 = theta * theta; /* We are operating on |x|, so we need to add back the original signbit for sinf. */ int sign; /* Determine positive or negative primary interval. */ sign = ones[((n >> 2) & 1) ^ signbit]; /* Are we in the primary interval of sin or cos? */ if ((n & 2) == 0) { /* Here sinf() is calculated using sin Chebyshev polynomial: x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ sx = S3 + theta2 * S4; /* S3+x^2*S4. */ sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */ sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */ sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */ sx = theta + theta * theta2 * sx; } else { /* Here sinf() is calculated using cos Chebyshev polynomial: 1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */ sx = C3 + theta2 * C4; /* C3+x^2*C4. */ sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */ sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */ sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */ sx = 1.0 + theta2 * sx; } /* Add in the signbit and assign the result. */ return sign * sx; } float SINF_FUNC (float x) { double cx; double theta = x; double abstheta = fabs (theta); /* If |x|< Pi/4. */ if (isless (abstheta, M_PI_4)) { if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */ { const double theta2 = theta * theta; /* Chebyshev polynomial of the form for sin x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ cx = S3 + theta2 * S4; cx = S2 + theta2 * cx; cx = S1 + theta2 * cx; cx = S0 + theta2 * cx; cx = theta + theta * theta2 * cx; return cx; } else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */ { /* A simpler Chebyshev approximation is close enough for this range: for sin: x+x^3*(SS0+x^2*SS1). */ const double theta2 = theta * theta; cx = SS0 + theta2 * SS1; cx = theta + theta * theta2 * cx; return cx; } else { /* Handle some special cases. */ if (theta) return theta - (theta * SMALL); else return theta; } } else /* |x| >= Pi/4. */ { unsigned int signbit = isless (x, 0); if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */ { /* There are cases where FE_UPWARD rounding mode can produce a result of abstheta * inv_PI_4 == 9, where abstheta < 9pi/4, so the domain for pio2_table must go to 5 (9 / 2 + 1). */ unsigned int n = (abstheta * inv_PI_4) + 1; theta = abstheta - pio2_table[n / 2]; return reduced (theta, n, signbit); } else if (isless (abstheta, INFINITY)) { if (abstheta < 0x1p+23) /* |x| < 2^23. */ { unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; double x = n / 2; theta = x * PI_2_lo + (x * PI_2_hi + abstheta); /* Argument reduction needed. */ return reduced (theta, n, signbit); } else /* |x| >= 2^23. */ { x = fabsf (x); int exponent; GET_FLOAT_WORD (exponent, x); exponent = (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS; exponent += 3; exponent /= 28; double a = invpio4_table[exponent] * x; double b = invpio4_table[exponent + 1] * x; double c = invpio4_table[exponent + 2] * x; double d = invpio4_table[exponent + 3] * x; uint64_t l = a; l &= ~0x7; a -= l; double e = a + b; l = e; e = a - l; if (l & 1) { e -= 1.0; e += b; e += c; e += d; e *= M_PI_4; return reduced (e, l + 1, signbit); } else { e += b; e += c; e += d; if (e <= 1.0) { e *= M_PI_4; return reduced (e, l + 1, signbit); } else { l++; e -= 2.0; e *= M_PI_4; return reduced (e, l + 1, signbit); } } } } else { int32_t ix; /* High word of x. */ GET_FLOAT_WORD (ix, abstheta); /* Sin(Inf or NaN) is NaN. */ if (ix == 0x7f800000) __set_errno (EDOM); return x - x; } } } #ifndef SINF libm_alias_float (__sin, sin) #endif