/* Used by sinf, cosf and sincosf functions. Copyright (C) 2018-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include "math_config.h" #include /* 2PI * 2^-64. */ static const double pi63 = 0x1.921FB54442D18p-62; /* PI / 4. */ static const float pio4 = 0x1.921FB6p-1f; /* Polynomial data (the cosine polynomial is negated in the 2nd entry). */ extern const sincos_t __sincosf_table[2] attribute_hidden; /* Table with 4/PI to 192 bit precision. */ extern const uint32_t __inv_pio4[] attribute_hidden; /* Top 12 bits of the float representation with the sign bit cleared. */ static inline uint32_t abstop12 (float x) { return (asuint (x) >> 20) & 0x7ff; } /* Fast range reduction using single multiply-subtract. Return the modulo of X as a value between -PI/4 and PI/4 and store the quadrant in NP. The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4, the result is accurate for |X| <= 120.0. */ static inline double reduce_fast (double x, const sincos_t *p, int *np) { double r; #if TOINT_INTRINSICS /* Use fast round and lround instructions when available. */ r = x * p->hpi_inv; *np = converttoint (r); return x - roundtoint (r) * p->hpi; #else /* Use scaled float to int conversion with explicit rounding. hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31. This avoids inaccuracies introduced by truncating negative values. */ r = x * p->hpi_inv; int n = ((int32_t)r + 0x800000) >> 24; *np = n; return x - n * p->hpi; #endif } /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic. XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored). Return the modulo between -PI/4 and PI/4 and store the quadrant in NP. Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit multiply computes the exact 2.62-bit fixed-point modulo. Since the result can have at most 29 leading zeros after the binary point, the double precision result is accurate to 33 bits. */ static inline double reduce_large (uint32_t xi, int *np) { const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15]; int shift = (xi >> 23) & 7; uint64_t n, res0, res1, res2; xi = (xi & 0xffffff) | 0x800000; xi <<= shift; res0 = xi * arr[0]; res1 = (uint64_t)xi * arr[4]; res2 = (uint64_t)xi * arr[8]; res0 = (res2 >> 32) | (res0 << 32); res0 += res1; n = (res0 + (1ULL << 61)) >> 62; res0 -= n << 62; double x = (int64_t)res0; *np = n; return x * pi63; }