/* Compute cosine of argument. Copyright (C) 2017 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include "s_sincosf.h" #ifndef COSF # define COSF_FUNC __cosf #else # define COSF_FUNC COSF #endif float COSF_FUNC (float x) { double theta = x; double abstheta = fabs (theta); if (isless (abstheta, M_PI_4)) { double cx; if (abstheta >= 0x1p-5) { const double theta2 = theta * theta; /* Chebyshev polynomial of the form for cos: * 1 + x^2 (C0 + x^2 (C1 + x^2 (C2 + x^2 (C3 + x^2 * C4)))). */ cx = C3 + theta2 * C4; cx = C2 + theta2 * cx; cx = C1 + theta2 * cx; cx = C0 + theta2 * cx; cx = 1. + theta2 * cx; return cx; } else if (abstheta >= 0x1p-27) { /* A simpler Chebyshev approximation is close enough for this range: * 1 + x^2 (CC0 + x^3 * CC1). */ const double theta2 = theta * theta; cx = CC0 + theta * theta2 * CC1; cx = 1.0 + theta2 * cx; return cx; } else { /* For small enough |theta|, this is close enough. */ return 1.0 - abstheta; } } else /* |theta| >= Pi/4. */ { if (isless (abstheta, 9 * M_PI_4)) { /* There are cases where FE_UPWARD rounding mode can produce a result of abstheta * inv_PI_4 == 9, where abstheta < 9pi/4, so the domain for pio2_table must go to 5 (9 / 2 + 1). */ unsigned int n = (abstheta * inv_PI_4) + 1; theta = abstheta - pio2_table[n / 2]; return reduced_cos (theta, n); } else if (isless (abstheta, INFINITY)) { if (abstheta < 0x1p+23) { unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; double x = n / 2; theta = (abstheta - x * PI_2_hi) - x * PI_2_lo; /* Argument reduction needed. */ return reduced_cos (theta, n); } else /* |theta| >= 2^23. */ { x = fabsf (x); int exponent; GET_FLOAT_WORD (exponent, x); exponent = (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS; exponent += 3; exponent /= 28; double a = invpio4_table[exponent] * x; double b = invpio4_table[exponent + 1] * x; double c = invpio4_table[exponent + 2] * x; double d = invpio4_table[exponent + 3] * x; uint64_t l = a; l &= ~0x7; a -= l; double e = a + b; l = e; e = a - l; if (l & 1) { e -= 1.0; e += b; e += c; e += d; e *= M_PI_4; return reduced_cos (e, l + 1); } else { e += b; e += c; e += d; if (e <= 1.0) { e *= M_PI_4; return reduced_cos (e, l + 1); } else { l++; e -= 2.0; e *= M_PI_4; return reduced_cos (e, l + 1); } } } } else { int32_t ix; GET_FLOAT_WORD (ix, abstheta); /* cos(Inf or NaN) is NaN. */ if (ix == 0x7f800000) /* Inf. */ __set_errno (EDOM); return x - x; } } } #ifndef COSF libm_alias_float (__cos, cos) #endif