/* Configuration for math routines. Copyright (C) 2017-2024 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef _MATH_CONFIG_H #define _MATH_CONFIG_H #include #include #include #include #ifndef WANT_ROUNDING /* Correct special case results in non-nearest rounding modes. */ # define WANT_ROUNDING 1 #endif #ifndef WANT_ERRNO /* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */ # define WANT_ERRNO 1 #endif #ifndef WANT_ERRNO_UFLOW /* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */ # define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO) #endif #ifndef TOINT_INTRINSICS /* When set, the roundtoint and converttoint functions are provided with the semantics documented below. */ # define TOINT_INTRINSICS 0 #endif #if TOINT_INTRINSICS /* Round x to nearest int in all rounding modes, ties have to be rounded consistently with converttoint so the results match. If the result would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */ static inline double_t roundtoint (double_t x); /* Convert x to nearest int in all rounding modes, ties have to be rounded consistently with roundtoint. If the result is not representible in an int32_t then the semantics is unspecified. */ static inline int32_t converttoint (double_t x); #endif static inline uint32_t asuint (float f) { union { float f; uint32_t i; } u = {f}; return u.i; } static inline float asfloat (uint32_t i) { union { uint32_t i; float f; } u = {i}; return u.f; } static inline uint64_t asuint64 (double f) { union { double f; uint64_t i; } u = {f}; return u.i; } static inline double asdouble (uint64_t i) { union { uint64_t i; double f; } u = {i}; return u.f; } static inline int issignalingf_inline (float x) { uint32_t ix = asuint (x); if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN) return (ix & 0x7fc00000) == 0x7fc00000; return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL; } #define BIT_WIDTH 32 #define MANTISSA_WIDTH 23 #define EXPONENT_WIDTH 8 #define MANTISSA_MASK 0x007fffff #define EXPONENT_MASK 0x7f800000 #define EXP_MANT_MASK 0x7fffffff #define QUIET_NAN_MASK 0x00400000 #define SIGN_MASK 0x80000000 static inline bool is_nan (uint32_t x) { return (x & EXP_MANT_MASK) > EXPONENT_MASK; } static inline uint32_t get_mantissa (uint32_t x) { return x & MANTISSA_MASK; } /* Convert integer number X, unbiased exponent EP, and sign S to double: result = X * 2^(EP+1 - exponent_bias) NB: zero is not supported. */ static inline double make_float (uint32_t x, int ep, uint32_t s) { int lz = __builtin_clz (x) - EXPONENT_WIDTH; x <<= lz; ep -= lz; if (__glibc_unlikely (ep < 0 || x == 0)) { x >>= -ep; ep = 0; } return asfloat (s + x + (ep << MANTISSA_WIDTH)); } attribute_hidden float __math_oflowf (uint32_t); attribute_hidden float __math_uflowf (uint32_t); attribute_hidden float __math_may_uflowf (uint32_t); attribute_hidden float __math_divzerof (uint32_t); attribute_hidden float __math_invalidf (float); attribute_hidden float __math_edomf (float x); /* Shared between expf, exp2f, exp10f, and powf. */ #define EXP2F_TABLE_BITS 5 #define EXP2F_POLY_ORDER 3 extern const struct exp2f_data { uint64_t tab[1 << EXP2F_TABLE_BITS]; double shift_scaled; double poly[EXP2F_POLY_ORDER]; double shift; double invln2_scaled; double poly_scaled[EXP2F_POLY_ORDER]; } __exp2f_data attribute_hidden; #define LOGF_TABLE_BITS 4 #define LOGF_POLY_ORDER 4 extern const struct logf_data { struct { double invc, logc; } tab[1 << LOGF_TABLE_BITS]; double ln2; double poly[LOGF_POLY_ORDER - 1]; /* First order coefficient is 1. */ } __logf_data attribute_hidden; #define LOG2F_TABLE_BITS 4 #define LOG2F_POLY_ORDER 4 extern const struct log2f_data { struct { double invc, logc; } tab[1 << LOG2F_TABLE_BITS]; double poly[LOG2F_POLY_ORDER]; } __log2f_data attribute_hidden; #define POWF_LOG2_TABLE_BITS 4 #define POWF_LOG2_POLY_ORDER 5 #if TOINT_INTRINSICS # define POWF_SCALE_BITS EXP2F_TABLE_BITS #else # define POWF_SCALE_BITS 0 #endif #define POWF_SCALE ((double) (1 << POWF_SCALE_BITS)) extern const struct powf_log2_data { struct { double invc, logc; } tab[1 << POWF_LOG2_TABLE_BITS]; double poly[POWF_LOG2_POLY_ORDER]; } __powf_log2_data attribute_hidden; #endif