/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
. */
#include
#include
#include
#include
#include
#include
#include
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const float gamma_coeff[] =
{
0x1.555556p-4f,
-0xb.60b61p-12f,
0x3.403404p-12f,
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
/* Return gamma (X), for positive X less than 42, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static float
gammaf_positive (float x, int *exp2_adj)
{
int local_signgam;
if (x < 0.5f)
{
*exp2_adj = 0;
return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
}
else if (x <= 1.5f)
{
*exp2_adj = 0;
return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
}
else if (x < 2.5f)
{
*exp2_adj = 0;
float x_adj = x - 1;
return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
* x_adj);
}
else
{
float eps = 0;
float x_eps = 0;
float x_adj = x;
float prod = 1;
if (x < 4.0f)
{
/* Adjust into the range for applying Stirling's
approximation. */
float n = ceilf (4.0f - x);
x_adj = math_narrow_eval (x + n);
x_eps = (x - (x_adj - n));
prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
float exp_adj = -eps;
float x_adj_int = roundf (x_adj);
float x_adj_frac = x_adj - x_adj_int;
int x_adj_log2;
float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
if (x_adj_mant < M_SQRT1_2f)
{
x_adj_log2--;
x_adj_mant *= 2.0f;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
float ret = (__ieee754_powf (x_adj_mant, x_adj)
* __ieee754_exp2f (x_adj_log2 * x_adj_frac)
* __ieee754_expf (-x_adj)
* sqrtf (2 * M_PIf / x_adj)
/ prod);
exp_adj += x_eps * __ieee754_logf (x_adj);
float bsum = gamma_coeff[NCOEFF - 1];
float x_adj2 = x_adj * x_adj;
for (size_t i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
return ret + ret * __expm1f (exp_adj);
}
}
float
__ieee754_gammaf_r (float x, int *signgamp)
{
int32_t hx;
float ret;
GET_FLOAT_WORD (hx, x);
if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0 / x;
}
if (__builtin_expect (hx < 0, 0)
&& (uint32_t) hx < 0xff800000 && rintf (x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (__glibc_unlikely (hx == 0xff800000))
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 36.0f)
{
/* Overflow. */
*signgamp = 0;
ret = math_narrow_eval (FLT_MAX * FLT_MAX);
return ret;
}
else
{
SET_RESTORE_ROUNDF (FE_TONEAREST);
if (x > 0.0f)
{
*signgamp = 0;
int exp2_adj;
float tret = gammaf_positive (x, &exp2_adj);
ret = __scalbnf (tret, exp2_adj);
}
else if (x >= -FLT_EPSILON / 4.0f)
{
*signgamp = 0;
ret = 1.0f / x;
}
else
{
float tx = truncf (x);
*signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
if (x <= -42.0f)
/* Underflow. */
ret = FLT_MIN * FLT_MIN;
else
{
float frac = tx - x;
if (frac > 0.5f)
frac = 1.0f - frac;
float sinpix = (frac <= 0.25f
? __sinf (M_PIf * frac)
: __cosf (M_PIf * (0.5f - frac)));
int exp2_adj;
float tret = M_PIf / (-x * sinpix
* gammaf_positive (-x, &exp2_adj));
ret = __scalbnf (tret, -exp2_adj);
math_check_force_underflow_nonneg (ret);
}
}
ret = math_narrow_eval (ret);
}
if (isinf (ret) && x != 0)
{
if (*signgamp < 0)
{
ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
ret = -ret;
}
else
ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
return ret;
}
else if (ret == 0)
{
if (*signgamp < 0)
{
ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
ret = -ret;
}
else
ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
return ret;
}
else
return ret;
}
libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)