/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include #include /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const float gamma_coeff[] = { 0x1.555556p-4f, -0xb.60b61p-12f, 0x3.403404p-12f, }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 42, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static float gammaf_positive (float x, int *exp2_adj) { int local_signgam; if (x < 0.5f) { *exp2_adj = 0; return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5f) { *exp2_adj = 0; return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam)); } else if (x < 2.5f) { *exp2_adj = 0; float x_adj = x - 1; return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam)) * x_adj); } else { float eps = 0; float x_eps = 0; float x_adj = x; float prod = 1; if (x < 4.0f) { /* Adjust into the range for applying Stirling's approximation. */ float n = ceilf (4.0f - x); x_adj = math_narrow_eval (x + n); x_eps = (x - (x_adj - n)); prod = __gamma_productf (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ float exp_adj = -eps; float x_adj_int = __roundf (x_adj); float x_adj_frac = x_adj - x_adj_int; int x_adj_log2; float x_adj_mant = __frexpf (x_adj, &x_adj_log2); if (x_adj_mant < (float) M_SQRT1_2) { x_adj_log2--; x_adj_mant *= 2.0f; } *exp2_adj = x_adj_log2 * (int) x_adj_int; float ret = (__ieee754_powf (x_adj_mant, x_adj) * __ieee754_exp2f (x_adj_log2 * x_adj_frac) * __ieee754_expf (-x_adj) * sqrtf (2 * (float) M_PI / x_adj) / prod); exp_adj += x_eps * __ieee754_logf (x_adj); float bsum = gamma_coeff[NCOEFF - 1]; float x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * __expm1f (exp_adj); } } float __ieee754_gammaf_r (float x, int *signgamp) { int32_t hx; float ret; GET_FLOAT_WORD (hx, x); if (__glibc_unlikely ((hx & 0x7fffffff) == 0)) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (__builtin_expect (hx < 0, 0) && (uint32_t) hx < 0xff800000 && rintf (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (__glibc_unlikely (hx == 0xff800000)) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000)) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 36.0f) { /* Overflow. */ *signgamp = 0; ret = math_narrow_eval (FLT_MAX * FLT_MAX); return ret; } else { SET_RESTORE_ROUNDF (FE_TONEAREST); if (x > 0.0f) { *signgamp = 0; int exp2_adj; float tret = gammaf_positive (x, &exp2_adj); ret = __scalbnf (tret, exp2_adj); } else if (x >= -FLT_EPSILON / 4.0f) { *signgamp = 0; ret = 1.0f / x; } else { float tx = __truncf (x); *signgamp = (tx == 2.0f * __truncf (tx / 2.0f)) ? -1 : 1; if (x <= -42.0f) /* Underflow. */ ret = FLT_MIN * FLT_MIN; else { float frac = tx - x; if (frac > 0.5f) frac = 1.0f - frac; float sinpix = (frac <= 0.25f ? __sinf ((float) M_PI * frac) : __cosf ((float) M_PI * (0.5f - frac))); int exp2_adj; float tret = (float) M_PI / (-x * sinpix * gammaf_positive (-x, &exp2_adj)); ret = __scalbnf (tret, -exp2_adj); math_check_force_underflow_nonneg (ret); } } ret = math_narrow_eval (ret); } if (isinf (ret) && x != 0) { if (*signgamp < 0) { ret = math_narrow_eval (-__copysignf (FLT_MAX, ret) * FLT_MAX); ret = -ret; } else ret = math_narrow_eval (__copysignf (FLT_MAX, ret) * FLT_MAX); return ret; } else if (ret == 0) { if (*signgamp < 0) { ret = math_narrow_eval (-__copysignf (FLT_MIN, ret) * FLT_MIN); ret = -ret; } else ret = math_narrow_eval (__copysignf (FLT_MIN, ret) * FLT_MIN); return ret; } else return ret; } strong_alias (__ieee754_gammaf_r, __gammaf_r_finite)